## **INITIAL AIR QUALITY PERMIT APPLICATION**

Ingleside Blue Ammonia Ingleside, San Patricio County, Texas

Prepared for:

Ingleside Clean Ammonia Partners, LLC Ingleside Blue Ammonia Ingleside, Texas 78362

**OCTOBER 2023** 



Edge Engineering and Science, LLC 16285 Park Ten Place, Suite 300 Houston, Texas 77084 Texas Registered Engineering Firm F-12795

## **Table of Contents**

| 1.0 |       | INTRODUCTION                                                           | 1    |
|-----|-------|------------------------------------------------------------------------|------|
| 1.  | .1    | Permit Fee Information                                                 | 1    |
| 1.  | .2    | Application Content                                                    | 2    |
| 2.0 |       | PROJECT AND PROCESS DESCRIPTIONS                                       | 3    |
| 2.  | .1    | Project Description                                                    | 3    |
| 2.  | .2    | Process Description                                                    | 4    |
|     | 2.2.1 | Front-End Hydrogen Production and Carbon Capture                       | 4    |
|     | 2.2.2 | Back-End Ammonia Synthesis                                             | 6    |
|     | 2.2.3 | Miscellaneous Facilities                                               | 6    |
| 3.0 |       | FEDERAL NEW SOURCE REVIEW                                              | 8    |
| 3.  | .1    | NNSR Applicability Review                                              | 8    |
| 3.  | .2    | PSD Applicability Review                                               | 8    |
| 3.  | .3    | Federal Hazardous Air Pollutant Permit Review                          | 9    |
| 4.0 |       | GENERAL PERMIT REQUIREMENTS                                            | 10   |
| 4.  | .1    | Protection of Public Health and Welfare [30 TAC §116.111(a)(2)(A)]     | .10  |
|     | 4.1.1 | TCEQ General Rules [30 TAC CHAPTER 101]                                | . 10 |
|     | 4.1.2 | Visible Emissions and Particulate Matter [30 TAC CHAPTER 111]          | .11  |
|     | 4.1.3 | Sulfur Compounds [30 TAC CHAPTER 112]                                  | .12  |
|     | 4.1.4 | Toxic Materials [30 TAC CHAPTER 113]                                   | .13  |
|     | 4.1.5 | Volatile Organic Compounds [30 TAC CHAPTER 115]                        | .13  |
|     | 4.1.6 | Nitrogen Compounds [30 TAC CHAPTER 117]                                | . 15 |
|     | 4.1.7 | Air Pollution Episodes [30 TAC CHAPTER 118]                            | .16  |
|     | 4.1.8 | Federal Operating Permits [30 TAC CHAPTER 122]                         | .16  |
| 4.  | .2    | Measurement of Significant Air Contaminants [30 TAC §116.111(a)(2)(B)] | .16  |
| 4.  | .3    | Best Available Control Technology [30 TAC §116.111(a)(2)(C)]           | . 16 |
|     | 4.3.1 | Cooling Towers                                                         | . 18 |
|     | 4.3.2 | Auxiliary Boiler                                                       | . 18 |
|     | 4.3.3 | Heaters                                                                | . 19 |
|     | 4.3.4 | Emergency Engines                                                      | .19  |
|     | 4.3.5 | Flares                                                                 | .19  |
|     | 4.3.6 | Atmospheric Storage Tanks                                              | .20  |
|     | 4.3.7 | Wastewater Facilities                                                  | . 20 |

Initial Air Quality Permit Application Ingleside Clean Ammonia Partners, LLC Ingleside Blue Ammonia October 2023

| 4.3.8          | CO <sub>2</sub> Vents                                                                 | 20 |
|----------------|---------------------------------------------------------------------------------------|----|
| 4.3.9          | Equipment Leak Fugitives                                                              | 21 |
| 4.4            | New Source Performance Standards (NSPS) [30 TAC §116.111(a)(2)(D)]                    | 22 |
| 4.5<br>§116.11 | National Emission Standards for Hazardous Air Pollutants (NESHAP) [30 TAC 1(a)(2)(E)] | 22 |
| 4.6            | NESHAP for Source Categories [30 TAC §116.111(a)(2)(F)]                               | 22 |
| 4.7            | Performance Demonstration [30 TAC §116.111(a)(2)(G)]                                  | 23 |
| 4.8            | Nonattainment Review [30 TAC §116.111(a)(2)(H)]                                       | 23 |
| 4.9            | Prevention of Significant Deterioration (PSD) Review [30 TAC §116.111(a)(2)(I)]       | 23 |
| 4.10           | Air Dispersion Modeling [30 TAC §116.111(a)(2)(J)]                                    | 23 |
| 4.11           | Hazardous Air Pollutants [30 TAC §116.111(a)(2)(K)]                                   | 23 |
| 4.12           | Mass Cap and Trade Allowances [30 TAC §116.111(a)(2)(L)]                              | 23 |
| 4.13           | Public Notice Requirements [30 TAC §116.111(b)]                                       | 24 |
| 5.0            | DISASTER REVIEW                                                                       | 25 |

#### LIST OF TABLES

- Table 3-1 Proposed Emissions
- Table 4-1Similar Industries Permit and RBLC Review Summary

#### LIST OF APPENDICES

- Appendix A TCEQ PI-1 Workbook
- Appendix B Area Map and Plot Plan
- Appendix C Process Flow Diagrams
- Appendix D TCEQ Expedited Permitting Forms, Public Involvement Plan, and Plain Language Summaries
- Appendix E Emissions Calculations
- Appendix F Professional Engineer Certification

#### LIST OF ACRONYMS

| §               | Section                                                  |
|-----------------|----------------------------------------------------------|
| ATR             | autothermal reformer                                     |
| BACT            | Best Available Control Technology                        |
| BOG             | boil-off gas                                             |
| BWON            | Benzene Waste Operations NESHAP                          |
| CAR             | Consolidated Federal Air Rules                           |
| CCS             | carbon capture and sequestration                         |
| CEMS            | continuous emissions monitoring system                   |
| CFR             | Code of Federal Regulations                              |
| CH <sub>4</sub> | methane                                                  |
| CN              | Customer Number                                          |
| СО              | carbon monoxide                                          |
| CO <sub>2</sub> | carbon dioxide                                           |
| DERC            | Discrete Emission Reduction Credit                       |
| EMEW            | Electronic Modeling Evaluation Workbook                  |
| EPN             | emission point number                                    |
| ERC             | Emission Reduction Credit                                |
| FCAA            | Federal Clean Air Act                                    |
| FIN             | facility identification number                           |
| GHG             | greenhouse gases                                         |
| H₂S             | hydrogen sulfide                                         |
| НАР             | hazardous air pollutant                                  |
| HFR             | horizontal fixed roof                                    |
| HGB             | Houston-Galveston-Brazoria                               |
| IBA             | Ingleside Blue Ammonia                                   |
| ICAP            | Ingleside Clean Ammonia Partners, LLC                    |
| lb              | pound                                                    |
| LAER            | Lowest Achievable Emission Rate                          |
| LDAR            | leak detection and repair                                |
| MACT            | Maximum Achievable Control Technology                    |
| MDEA            | methyl diethanolamine                                    |
| Mg              | megagram                                                 |
| MMBtu/hr        | million British thermal units per hour                   |
| MSS             | maintenance, startup, and shutdown                       |
| MTPD            | metric tons per day                                      |
| NESHAP          | National Emission Standards for Hazardous Air Pollutants |
| NH <sub>3</sub> | ammonia                                                  |
| NNSR            | Nonattainment New Source Review                          |
| NO <sub>x</sub> | nitrogen oxides                                          |
|                 |                                                          |

Initial Air Quality Permit Application Ingleside Clean Ammonia Partners, LLC Ingleside Blue Ammonia October 2023

| NSPS              | New Source Performance Standards                         |
|-------------------|----------------------------------------------------------|
| NSR               | New Source Review                                        |
| OSHA              | Occupational Health and Safety Administration            |
| P.E.              | Professional Engineer                                    |
| PM                | particulate matter                                       |
| PM <sub>10</sub>  | PM less than 10 microns in diameter                      |
| PM <sub>2.5</sub> | PM less than 2.5 microns in diameter                     |
| ppmv              | parts per million by volume                              |
| PSD               | Prevention of Significant Deterioration                  |
| psia              | pounds per square inch absolute                          |
| PSM               | Process Safety Management                                |
| RACT              | Reasonably Available Control Technology                  |
| RBLC              | RACT/BACT/LAER Clearinghouse                             |
| RMP               | Risk Management Plan                                     |
| RN                | Regulated Entity Number                                  |
| SCR               | selective catalytic reduction                            |
| SNCR              | selective non-catalytic reduction                        |
| SO <sub>2</sub>   | sulfur dioxide                                           |
| SOCMI             | Synthetic Organic Chemical Manufacturing Industry        |
| SOP               | Site Operating Permit                                    |
| STEERS            | State of Texas Environmental Electronic Reporting System |
| ТАВ               | Total Annual Benzene                                     |
| TAC               | Texas Administrative Code                                |
| TCAA              | Texas Clean Air Act                                      |
| TCEQ              | Texas Commission on Environmental Quality                |
| tpy               | tons per year                                            |
| US EPA            | United States Environmental Protection Agency            |
| VFR               | vertical fixed roof                                      |
| VOC               | volatile organic compounds                               |

## **1.0 INTRODUCTION**

Ingleside Clean Ammonia Partners, LLC (ICAP) plans to build the Ingleside Blue Ammonia (IBA) plant (the Plant) located at 1450 Lexington Blvd in Ingleside, San Patricio County, Texas. San Patricio County is currently designated as attainment for all criteria pollutants and averaging times.<sup>1</sup> The IBA plant will be a blue ammonia production and storage operation, which will be comprised of two production trains with shared utilities, storage, and support systems (the project). Ammonia will be transferred offsite through closed-loop loading via an adjacent for-hire marine terminal, operated by a third party. Producing blue ammonia is an emerging low-carbon alternative to traditional ammonia manufacturing methods. Blue ammonia utilizes carbon dioxide ( $CO_2$ ) capture, permanent sequestration, and storage technologies. Carbon capture and sequestration (CCS) infrastructure is still new and developing in most places, including in this region of Texas. While current third-party schedules show CCS infrastructure to be available at projected Plant startup, in the event CCS infrastructure is not fully operational and to allow for integration with plant operations, ICAP requests provisional authorization to operate without CCS for a period up to 180 days after startup of each ammonia production line. With this application, ICAP is requesting that the Texas Commission on Environmental Quality (TCEQ) assign a new Customer Number (CN) for ICAP and Regulated Entity Number (RN) for the IBA plant and site through the submittal of applicable Core Data Form information during the required online transmittal of this application in the State of Texas Environmental Electronic Reporting System (STEERS).

The proposed project is considered a major stationary source of carbon monoxide (CO) and particulate matter (PM); therefore, the project requires Prevention of Significant Deterioration (PSD) review for these compounds plus other compounds that exceed their applicable significance levels, including nitrogen oxides (NO<sub>x</sub>), unspeciated volatile organic compounds (VOC), PM less than 2.5 microns in diameter (PM<sub>2.5</sub>), and greenhouse gases (GHGs). In addition, minor New Source Review (NSR) is required for other compounds, including sulfur dioxide (SO<sub>2</sub>), PM less than 10 microns in diameter (PM<sub>10</sub>), ammonia (NH<sub>3</sub>), and speciated VOCs.

In order to properly authorize emissions from the site, ICAP respectfully submits this permit application pursuant to 30 Texas Administrative Code (TAC) Section (§)116.111, New Source Review Permits – General Application, and §116.160, Prevention of Significant Deterioration Requirements.

## **1.1** Permit Fee Information

A permit fee of \$75,000 for this project is based on its status as a major source and in accordance with the fee schedule set forth by 30 TAC §116.141. An estimate of capital costs associated with the project are not included with this permit application; therefore, the permit application fee of \$75,000 applies. ICAP has submitted payment of \$75,000 via the TCEQ's ePay system.

<sup>&</sup>lt;sup>1</sup> Attainment data obtained from <u>https://www.tceq.texas.gov/airquality/sip/cc/cc-status</u>, accessed on June 8, 2023.

ICAP is also submitting this permit application for acceptance into the TCEQ's expedited permitting program, which requires an additional \$20,000 surcharge to be paid. ICAP has submitted payment of \$20,000 via the TCEQ's ePay system.

## **1.2** Application Content

The remaining sections in this application are organized as follows:

- + Section 2.0 Provides a description of the proposed project;
- + Section 3.0 Provides discussion of Nonattainment NSR (NNSR) and PSD Review;
- + Section 4.0 Presents a review of general permit requirements;
- + Section 5.0 Addresses disaster review applicability;
- + Appendix A Contains the TCEQ PI-1 workbook;
- + Appendix B Contains the area map and plot plans;
- + Appendix C Contains the process flow diagrams;
- Appendix D Contains the TCEQ Expedited Permitting Forms, Public Involvement Plan, and Plain Language Summaries;
- + Appendix E Contains detailed emission calculations; and
- + Appendix F Professional Engineer (P.E.) Seal.

Initial Air Quality Permit Application Ingleside Clean Ammonia Partners, LLC Ingleside Blue Ammonia October 2023

## 2.0 PROJECT AND PROCESS DESCRIPTIONS

The blue ammonia production plant will receive materials via pipeline and store ammonia in refrigerated storage tanks prior to loading into marine vessels. During most periods of operation, the Plant will also capture  $CO_2$  from the production process and send it offsite via pipeline for sequestration. The following sections outline the proposed project and detailed process description.

## 2.1 **Project Description**

With this application, ICAP proposes to construct a blue ammonia production operation. This project will have the capacity to produce 8,000 metric tons per day (MTPD) of blue ammonia based on natural gas feed, with an overall  $CO_2$  product capture rate of 95% for all continuous users of natural gas in the project captured and sent via pipeline for offsite carbon sequestration. While current third-party schedules show CCS infrastructure to be available at projected Plant startup, in the event CCS infrastructure is not fully operational, and to allow for integration of  $CO_2$  offtake with plant operations, ICAP requests provisional authorization to operate without CCS for a period up to 180 days after startup of each train. ICAP estimates that this grass roots plant will generate 4,000 direct jobs at the peak of the construction phase and 100 permanent positions once operational.

The Plant will consist of two complete blue ammonia trains, each of which will generate blue ammonia from natural gas and share common utilities, storage, and piping to third-party marine loading operations.

The Plant is considered a major stationary source of CO and PM; therefore, the project requires PSD Review for these compounds plus other compounds that exceed their applicable significance levels, including  $NO_x$ , unspeciated VOC,  $PM_{2.5}$ , and GHGs. In addition, state NSR is required for other compounds, including  $SO_2$ ,  $NH_3$ , and speciated VOCs.

ICAP proposes to construct and operate the following emission units:

- + Two (2) 16-cell cooling towers (emission point numbers [EPNs]: CTWR1 and CTWR2);
- + One (1) auxiliary boiler (EPN: BLR-AUX1) to provide steam to the Plant for startup, turned-down to minimum while Plant is in normal operation;
- Three (3) diesel-fired fire water pump engines (EPNs: FW-PUMP1, FW-PUMP2, and FW-PUMP3), each to be operated up to 100 hours per year in non-emergency service such as testing and training;
- + Two (2) diesel-fired emergency generators (EPNs: EG-1 and EG-2), each to be operated up to 100 hours per year in non-emergency service such as testing and training;
- + Two (2) diesel horizontal fixed roof (HFR) storage tanks (EPNs: TK-1 and TK-2), which will provide diesel fuel for the emergency engines;
- Two (2) methyl diethanolamine (MDEA) vertical fixed roof (VFR) storage tanks (EPNs: TK-3A and TK-3B);
- + Two (2) MDEA VFR solution preparation tanks (EPNs: TK-4A and TK-4B);

- + Two (2) MDEA VFR solution drain tanks (EPNs: TK-5A and TK-5B);
- + Two (2) natural gas- and process gas-fired process heaters (facility identification numbers [FINs]/EPNs: H-201/H-201 and H-203/H-203);
- Two (2) natural gas- and process gas-fired steam superheaters (FINs/EPNs: H-202/H-201 and H-204/H-203);
- + Four (4) CO<sub>2</sub> vents (EPNs: VTCO2-1, VTCO2-2, VTCO2-3, and VTCO2-4) from the CO<sub>2</sub> absorber columns;
- + Two (2) natural gas-fired startup heaters (EPNs: H-590 and H-591);
- + Four (4) refrigerated, double-walled ammonia tanks (FINs: T-801, T-802, T-803, and T-804);
- Two (2) front-end flares (EPNs: FL-1 and FL-4) to control the front-end hydrogen production and carbon capture areas of each process train;
- + Two (2) back-end flares (EPNs: FL-2 and FL-5) to control the back-end ammonia synthesis area of each process train;
- + One (1) common flare (EPN: FL-3) for ammonia storage;
- + One (1) wastewater equalization tank (EPN: TK-WW1);
- + One (1) wastewater neutralization tank (EPN: TK-WW2);
- + One (1) off-spec wastewater tank (EPN: TK-WW3);
- + One (1) contact storm water storage tank (EPN: TK-SW1); and
- + Associated piping and components fugitives (EPN: FUG).

#### 2.2 **Process Description**

The blue ammonia will be produced in two process trains, which will each operate independently. They will share common utilities, storage, and piping to third-party marine loading operations. The remaining contents of this section provide a detailed process description. Process flow diagrams are provided as Figures C-1 and C-2 in Appendix C.

#### 2.2.1 Front-End Hydrogen Production and Carbon Capture

Each production train will include a front-end section that produces hydrogen from natural gas feed and captures the  $CO_2$  from the process streams thus creating blue hydrogen. For each train, natural gas feed will first be heated in the natural gas- and process gas-fired heater (FINs/EPNs: H-201/H-201, H-203/H-203) before being pre-treated to remove sulfur compounds in the desulfurization section. The desulfurization system will include a hydrogenator that will use hydrogen to convert sulfur in the natural gas to hydrogen sulfide (H<sub>2</sub>S), followed by an absorber that will remove the H<sub>2</sub>S by absorbing it into a catalyst in the enclosed absorption tower. This specialized catalyst chemically binds the H<sub>2</sub>S to its surface, so it cannot be released without sending it offsite for recycling/regeneration. During routine maintenance of the Plant approximately every four (4) years, this catalyst will be removed, regenerated offsite to chemically de-sorb the H<sub>2</sub>S, and replaced with fresh catalyst.

The pre-treated natural gas will then be reformed to mainly hydrogen, CO, and  $CO_2$  in two stages – an adiabatic pre-reformer followed by an autothermal reformer (ATR). First, the treated natural gas from the desulfurization section will be mixed with steam. The mixture will then be pre-heated in a natural gas- and process gas-fired heater (FINs/EPNs: H-201/H-201, H-203/H-203) before entering the adiabatic pre-reformer. The pre-reformer will convert the higher hydrocarbons in the stream to methane (CH<sub>4</sub>), hydrogen, CO, and CO<sub>2</sub>:

 $C_{N}H_{X} \rightarrow CH_{4} + H_{2}$  $CH_{4} + H_{2}O \leftrightarrow CO + 3 H_{2}$  $CO + H_{2}O \leftrightarrow CO_{2} + H_{2}$ 

The stream from the pre-reformer will then be reheated in the natural gas- and process gas-fired heater (FINs/EPNs: H-201/H-201, H-203/H-203) and sent to the ATR, where pre-heated oxygen will be added from a dedicated air separation unit, converting the hydrocarbons present in the natural gas feed (mainly  $CH_4$ ) into hydrogen, CO, and  $CO_2$ :

$$2 \text{ CH}_4 + 3 \text{ O}_2 \rightarrow 2 \text{ CO} + 4 \text{ H}_2\text{O}$$
$$\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2$$

After leaving the ATR, the process gas will be sent to the CO shift section. Steam will be injected into the process gas to further convert the CO in the stream into CO<sub>2</sub> and hydrogen:

$$CO + H_2O \leftrightarrow CO_2 + H_2$$

The  $CO_2$ /hydrogen stream will then enter the  $CO_2$  removal section to remove  $CO_2$  using MDEA. Tanks TK-3A/B will store bulk MDEA as needed for make-up; TK-4A/B are MDEA solution tanks used to prepare the MDEA to the proper concentration for use in the absorber, and solution drain tanks (TK-5A/B) assist in managing the MDEA concentration in the closed-loop amine system. MDEA in the absorber column will facilitate the absorption of  $CO_2$  from the process stream. Carbon dioxide captured in the  $CO_2$  removal section will be compressed, conditioned, and sent offsite in a pipeline for sequestration and/or geological injection by a third party. During routine  $CO_2$  removal operations, a small quantity of  $CO_2$  must be vented as part of the  $CO_2$  compressor control (EPNs: VTCO2-1, VTCO2-3). During startup, the  $CO_2$  removal section must vent to the atmosphere (EPNs: VTCO2-2, VTCO2-4) until the compression system has completed its startup and the  $CO_2$  is within the required specification prior to discharge. Venting to the atmosphere from the CO<sub>2</sub> removal section (EPNs: VTCO2-2, VTCO2-4) must also occur in the event that the third-party CCS infrastructure is down for maintenance, such as on the pipeline or sequestration well. While current third-party schedules show CCS infrastructure to be available at projected Plant startup, in the event CCS infrastructure is not fully operational, ICAP requests provisional authorization to operate without CCS for a period up to 180 days after startup. Emissions from the provisional authorization operation would be emitted from the four CO<sub>2</sub> vents (EPNs: VTCO2-1, VTCO2-2, VTCO2-3, VTCO2-4).

The process gas stream from the CO<sub>2</sub> removal section (containing mainly hydrogen) will be sent to the nitrogen wash unit, where cryogenic purification will take place. Nitrogen from the air separation unit

will be introduced at the top of the nitrogen wash column, which will run countercurrent to the process gas from the CO<sub>2</sub> removal section. The washed gas will leave the top of the column as almost pure nitrogen and hydrogen, where it will be warmed, and additional nitrogen will be introduced as needed to obtain the required hydrogen to nitrogen ratio. The process gas stream (column bottom stream) will be recycled for use as feed to the process gas fuel system.

During routine operations, there should be no front-end process emissions at the flares. However, during maintenance, startup, and shutdown (MSS) operations, the process vessels will be routed to the front-end process flares (EPNs: FL-1, FL-4).

#### 2.2.2 Back-End Ammonia Synthesis

Each independent production train will also have its own ammonia synthesis equipment, as described in this section. The nitrogen and hydrogen stream from the nitrogen wash unit will be compressed and routed to an ammonia converter. During startup, heat will be provided to the ammonia converter from a natural gas-fired startup heater (EPNs: H-590, H-591). At the completion of startup, the process can maintain the required heat and the startup heater will be shut down. During routine operations, there should be no process emissions at the flares; however, during MSS operations, the ammonia synthesis section will be routed to the back-end flares (EPNs: FL-2, FL-5).

The produced ammonia will be chilled and sent to storage in any of four (4) ammonia storage tanks (FINs: T-801, T-802, T-803, T-804) prior to off-site marine loading. Each of these tanks will be double containment, low pressure refrigerated tanks that maintain the ammonia below its boiling point, at approximately -28°F. The ammonia storage tanks will have a common boil-off gas (BOG) refrigeration system that will capture tank ammonia vapors that may be generated during normal operations. This BOG refrigeration system will compress and condense the ammonia vapors and return the liquid back to the tanks, providing closed-loop vapor control. The BOG system will include redundant units.

Ammonia vapors generated during transfer of the ammonia from the tanks to the third-party marine loading arms will return to the refrigerated ammonia tanks via a closed-loop system. Residual ammonia in the transfer system will also be returned to refrigerated ammonia tanks with the provision of nitrogen purge. During routine operations, there should be no process emissions at the common ammonia storage flare; however, during MSS operations, ammonia vapor generated from storage tanks and vapors returned from the marine loading provider will be routed to the common ammonia storage flare (EPN: FL-3).

#### 2.2.3 Miscellaneous Facilities

Ancillary support facilities include:

- + Sea water cooling towers (EPNs: CTWR1, CTWR2) to provide the full cooling duty of the Plant, via a closed cooling water system;
- + Two (2) diesel HFR storage tanks (EPNs: TK-1, TK-2);
- + Two (2) diesel-fired emergency generator engines (EPNs: EG-1, EG-2);
- + Three (3) diesel-fired fire water pump engines (EPNs: FW-PUMP1, FW-PUMP2, FW-PUMP3);

Initial Air Quality Permit Application Ingleside Clean Ammonia Partners, LLC Ingleside Blue Ammonia October 2023

- + One (1) wastewater equalization tank (EPN: TK-WW1);
- + One (1) wastewater neutralization tank (EPN: TK-WW2);
- + One (1) off-spec wastewater tank (EPN: TK-WW3); and
- + One (1) contact storm water storage tank (EPN: TK-SW1).

Throughout the Plant, there are also potential fugitive emissions from piping equipment (EPN: FUG).

## **3.0 FEDERAL NEW SOURCE REVIEW**

The project was reviewed to identify if the proposed emissions exceed applicable thresholds for PSD and/or NNSR permitting requirements. As discussed below, the proposed emissions exceed thresholds for PSD permitting requirements; therefore, ICAP is applying for an initial PSD permit.

## 3.1 NNSR Applicability Review

The proposed project is located in Ingleside, San Patricio County, Texas, which is currently designated attainment for all criteria pollutants; therefore, NNSR does not apply to the proposed project.

## **3.2 PSD Applicability Review**

The IBA plant is located in San Patricio County, Texas, which is designated attainment for all criteria pollutants; therefore, a PSD applicability review was performed for proposed emissions of VOC (as an ozone precursor), NO<sub>x</sub>, CO, PM, PM less than 10 microns in diameter (PM<sub>10</sub>), PM<sub>2.5</sub>, and SO<sub>2</sub>.

The emission threshold for "major stationary sources" varies under PSD according to the source type. As defined by 40 Code of Federal Regulations (CFR) §52.21(b)(1)(i), a source is considered major under PSD if it emits or has the potential to emit 250 tons per year (tpy) or more of any criteria pollutant, or 100 tpy for specified source categories. The Plant is one of the specified or "named" source categories, specifically a chemical process plant; therefore, the PSD major threshold of 100 tpy applies to the proposed project. The project emissions of each pollutant were compared to the corresponding PSD major source threshold to evaluate PSD applicability. The proposed project's emissions of PSD-regulated constituents are presented in Table 3-1.

|                                             | voc   | NOx   | со     | РМ     | <b>PM</b> 10 | PM2.5 | SO2  | H₂S  | GHGs      |
|---------------------------------------------|-------|-------|--------|--------|--------------|-------|------|------|-----------|
| Proposed Emissions                          | 33.22 | 90.13 | 216.97 | 183.71 | 13.09        | 12.37 | 3.86 | 0.87 | 3,376,117 |
| PSD Major Source Threshold                  | 100   | 100   | 100    | 100    | 100          | 100   | 100  | 100  |           |
| Less Than PSD Major Source<br>Threshold?    | Yes   | Yes   | No     | No     | Yes          | Yes   | Yes  | Yes  |           |
| PSD Significant Emission Rate               | 40    | 40    | 100    | 25     | 15           | 10    | 40   | 10   | 75,000    |
| Less Than PSD Significant<br>Emission Rate? | No    | No    | No     | No     | Yes          | No    | Yes  | Yes  | No        |
| PSD Review Required?                        | Yes   | Yes   | Yes    | Yes    | No           | Yes   | No   | No   | Yes       |

| Table 3-1                                            |   |
|------------------------------------------------------|---|
| Proposed Emissions (tpy) – PSD Regulated Constituent | S |

## 3.3 Federal Hazardous Air Pollutant Permit Review

Pursuant to Section 112(g) of the Federal Clean Air Act (FCAA), major sources of hazardous air pollutants (HAPs) for which the United States Environmental Protection Agency (US EPA) has not promulgated a Maximum Achievable Control Technology (MACT) standard under 40 CFR Part 63 must be permitted with case-by-case MACT applied, in accordance with permit requirements in TCEQ's 30 TAC Chapter 116, Subchapter E. US EPA has not promulgated MACT standards for hydrogen or ammonia production; hydrogen is not a regulated air pollutant and ammonia is not a federal HAP. As shown in Table 3-2, although the proposed project does have the potential to emit some federal HAPs, the project is not a major source of HAPs, with a potential to emit less than 10 tpy of any single HAP or 25 tpy of all HAPs in the aggregate. Therefore, Section 112(g) permitting does not apply.

|                                   | NUL   | HAPs <sup>[1]</sup> |         |       |  |
|-----------------------------------|-------|---------------------|---------|-------|--|
|                                   | NH3   | Methanol            | HCN     | Total |  |
| Proposed Emissions                | 66.27 | 8.73                | 0.00029 | 8.73  |  |
| Major Source Threshold            | N/A   | 10                  | 10      | 25    |  |
| Less Than Major Source Threshold? | N/A   | Yes                 | Yes     | Yes   |  |
| §112(g) Review Required?          | N/A   | No                  | No      | No    |  |

 Table 3-2

 Proposed Emissions (tpy) – Non-PSD Regulated Constituents

[1] These HAPs are a subset of the total VOCs shown in Table 3-1 and also are speciated here due to their classification as HAPs. Other non-HAP VOC species such as diesel and MDEA are included in the VOC total in Table 3-1.

## 4.0 GENERAL PERMIT REQUIREMENTS

The following sections address the requirements of the Texas Clean Air Act (TCAA) as codified in 30 TAC §116.111(a) along with ICAP's plans for compliance. Rules that affect project design and construction requirements are addressed below, while future and contingent operational requirements (e.g., filing emission event reports) are acknowledged but compliance with them is presumed and they do not affect the project design being submitted for TCEQ approval by this permit application. Requirements that do not apply (e.g., Subchapter 114 concerning motor vehicle design and operation) are not addressed.

## 4.1 Protection of Public Health and Welfare [30 TAC §116.111(a)(2)(A)]

As presented in this application, the emissions from the facilities will comply with the air quality rules and regulations and with the intent of the TCAA, including protection of the health and physical property of the people. As discussed and referenced further in Section 4.10, protection of public health and welfare is demonstrated by modeling how emissions from the project will not cause or contribute to exceedances of the applicable ambient air quality standards and concentration guidelines established or considered by TCEQ in reviewing air quality permit applications. No schools or other critical receptors were identified within 3,000 feet of the site boundary.

#### 4.1.1 TCEQ General Rules [30 TAC CHAPTER 101]

#### 4.1.1.1 Subchapter A [General Rules]

ICAP will comply with the General Rules addressing property contributions (§101.2), circumvention (§101.3), prohibition against causing an air pollution nuisance (§101.4) or traffic hazard (§101.5), emission inventory submittal (§101.10), alternate emission reduction proposals (§101.23), payment of inspection fees (§101.24) and emission fees (§101.27), and stringency determinations under Title V (§101.28), if, as, and when they become applicable following startup of the IBA plant. The rule requiring fees on certain boilers using fuel oil (§101.26) is not applicable to the proposed facilities due to their location and fuels. Compliance with the General Rules concerning air quality impacts, including the compliance with the national ambient air quality standards (§101.21), is demonstrated in the air quality analysis discussed and referenced further in Section 4.10.

ICAP will provide appropriate sampling ports and follow TCEQ sampling rules and guidance as required by §101.8, §101.9, and §101.14. The identification of new source performance standards and national emission standards for hazardous air pollutants (§101.20) is discussed in more detail elsewhere in this section.

#### 4.1.1.2 Subchapter B [Failure to Attain Fee]

This rule is not applicable in San Patricio County.

#### 4.1.1.3 Subchapter C [Voluntary Supplemental Leak Detection Program]

The Plant will not be participating in a voluntary supplemental leak detection program; therefore, the requirements of Subchapter C do not apply.

# 4.1.1.4 Subchapter F [Emissions Events and Scheduled Maintenance, Startup, and Shutdown Activities]

ICAP will comply with the emissions events, scheduled MSS, recordkeeping, and reporting requirements if and as such may occur during the course of Plant operation. The IBA plant will maintain and operate equipment and control devices in a manner to minimize excess emission events. ICAP, as needed, will comply with the procedures for applying for, obtaining, and transferring a variance.

#### 4.1.1.5 Subchapter H [Emissions Banking and Trading]

The IBA plant will be located in San Patricio County, which is an attainment county. Facilities in attainment counties may not generate Emission Reduction Credits (ERCs); therefore, the requirements of Division 1 do not apply.

The Plant will not be an electric generating facility; therefore, the requirements of Divisions 2 and 7 do not apply.

The Plant will be located in San Patricio County; therefore, the requirements of Division 3 (Mass Emission Cap and Trade Program) and Division 6 (Highly-Reactive Volatile Organic Compound Emissions Cap and Trade Program) do not apply.

If ICAP elects to use or generate Discrete Emission Reduction Credits (DERCs), the Plant will comply with the requirements of Division 4 related to the generation, certification, and use of DERCs.

#### 4.1.1.6 Subchapter J [Expedited Permitting]

ICAP is requesting expedited review of this application. Compliance with the demonstrations and fee payment requirements associated with this request are included as part of Appendix D of this application.

#### 4.1.2 Visible Emissions and Particulate Matter [30 TAC CHAPTER 111]

#### 4.1.2.1 Subchapter A [Visible Emissions and Particulate Matter]

The sources of emissions included in this permit application will not result in visible emissions in excess of those allowed under §111.111 of Division 1. The project does not include solid fuel combustion or material handling sources that have a meaningful potential to cause opacity in the range prohibited by this rule, and the flares are designed for smokeless operation.

There will not be any solid waste incineration devices at the site as addressed in Division 2 §111.121 through §111.129.

Facility operations will not involve abrasive blasting of potable water storage tanks performed by portable operations as discussed in Division 3 §111.131 through §111.139.

The site will not be located in any of the geographic areas subject to the requirements of Division 4 §111.141 through §111.149; therefore, these rules do not apply.

The cooling towers (EPNs: CTWR1, CTWR2), auxiliary boiler (EPN: BLR-AUX1), diesel-fired fire water pump engines (EPNs: FW-PUMP1, FW-PUMP2, FW-PUMP3), diesel-fired emergency generator engines (EPNs:

EG-1, EG-2), natural gas- and process gas-fired process heaters (EPNs: H-201, H-203), natural gas- and process gas-fired steam superheaters (FINs/EPNs: H-202/H-201, H-204/H-203), and natural gas-fired startup heaters (EPNs: H-590, H-591) will comply with the emission limit and effective stack height requirements of Division 5 §111.151. The limits on PM emissions directed by the use of Best Available Control Technology (BACT) (see Section 4.3 below, and the BACT tables in Form PI-1 in Appendix A) are at least as restrictive as the applicable PM limit imposed by Division 5 of this rule, and compliance with those BACT-based limits is discussed elsewhere in this application. There will be no steam generators at the site greater than 2,500 million British thermal units per hour (MMBtu/hr); therefore, the requirements of Division 5 §111.153 do not apply.

There will be no agricultural processes, as discussed in Division 6 §111.171 through §111.175, and no portable or transient operations as discussed in Division 7 §111.181 through §111.183 associated with the operations at the site.

#### 4.1.2.2 Subchapter B [Outdoor Burning]

Outdoor burning will not be conducted at the site; therefore §111.201 through §111.221 do not apply.

#### 4.1.3 Sulfur Compounds [30 TAC CHAPTER 112]

#### 4.1.3.1 Subchapter A [Control of Sulphur Dioxide]

Emissions of SO<sub>2</sub> will result from the combustion of pipeline quality natural gas in the auxiliary boiler (EPN: BLR-AUX1), process heaters (EPNs: H-201, H-203), steam superheaters (FINs/EPNs: H-202/H-201, H-204/H-202), and startup heaters (EPNs: H-590, H-591). However, except for the generally applicable net ground level concentration standards imposed by §112.3, the limits on sulfur compound emissions imposed by Chapter 112 do not apply to the facilities proposed as part of the IBA plant. ICAP will not operate a sulfuric acid plant nor a sulfur recovery plant, will not fire solid fossil fuel, and will not operate a nonferrous smelter process unit; therefore, requirements of §112.5 through §112.14 do not apply. The site will comply with the net ground level concentration standards specified in §112.3, as demonstrated in the air quality analysis discussed and referenced further in Section 4.10.

#### 4.1.3.2 Subchapter B [Control of Hydrogen Sulfide]

Piping fugitive components in this project may emit  $H_2S$ . A demonstration of compliance with the net ground level concentration standards for  $H_2S$  is included in the air quality analysis discussed and referenced further in Section 4.10.

#### 4.1.3.3 Subchapter C [Control of Sulfuric Acid]

The IBA plant will not be a source of sulfuric acid; therefore, the requirements of §112.41 through §112.47 do not apply.

#### 4.1.3.4 Subchapter D [Control of Total Reduced Sulfur]

ICAP will not operate a Kraft Pulp mill; therefore, the requirements of §112.51 through §112.59 do not apply.

#### 4.1.4 Toxic Materials [30 TAC CHAPTER 113]

4.1.4.1 Subchapter B [National Emission Standards for Hazardous Air Pollutants (FCAA, §112, 40 CFR Part 61)]

The IBA plant will not operate a phosphogypsum stack; therefore, Division 1 does not apply.

4.1.4.2 Subchapter C [National Emission Standards for Hazardous Air Pollutants for Source Categories (FCAA, §112, 40 CFR Part 63)]

The emission units associated with the proposed project will be subject to and will comply with the following requirements of 40 CFR Part 63 as incorporated by reference into this subchapter:

+ Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) applies to the emergency fire water pump engines (EPNs: FW-PUMP1, FW-PUMP2, FW-PUMP3) and generator engines (EPNs: EG-1, EG-2). ICAP will install and operate engines certified to meet applicable US EPA emissions limits to comply with this subpart and 40 CFR Part 60, Subpart IIII, to which this subpart points for applicable emission limits.

Although the site has two industrial cooling towers (EPNs: CTWR-1, CTWR-2), Subpart Q (National Emission Standards for Hazardous Air Pollutants for Industrial Process Cooling Towers) does not apply because the cooling towers are not operated with chromium-based water treatment chemicals. Because the site is not a major source of hazardous air pollutants (HAP), Subpart DDDDD (National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters) does not apply to the startup heaters (EPNs: H-590, H-591), process heaters (EPNs: H-201, H-203), and steam superheaters (FINs/EPNs: H-202/H-201, H-204/H-203). The site's auxiliary boiler (EPN: BLR-AUX1) is gas-fired and therefore exempt from the requirements of Subpart JJJJJJ (National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources), pursuant to 40 CFR §63.11195(e).

#### 4.1.4.3 Subchapter D [Designated Facilities and Pollutants]

The IBA plant will not have a municipal solid waste landfill, hospital/medical/infectious waste incinerator, small municipal waste combustion unit, industrial solid waste incineration unit, or any other solid waste incineration unit at the site; therefore, Subchapter D does not apply.

# 4.1.4.4 Subchapter E [Consolidated Federal Air Rules (CAR): Synthetic Organic Chemical Manufacturing Industry (SOCMI) {FCAA, §112, 40 CFR Part 65}]

Although the site is a chemical manufacturing plant, ammonia is not an organic chemical. Because the site will not be engaged in the manufacture of synthetic organic chemicals, the requirements of Subchapter E do not apply.

#### 4.1.5 Volatile Organic Compounds [30 TAC CHAPTER 115]

#### 4.1.5.1 Subchapter B [General Volatile Organic Compound Sources]

The fixed roof storage tanks at the IBA plant are not subject to the requirements of Division 1 (Storage of Volatile Organic Compounds), §115.112 through §115.119, because the vapor pressures of the stored

VOCs, diesel and MDEA, are less than 1.5 pounds per square inch absolute (psia). Ammonia is not an organic compound; therefore, the ammonia storage tanks are also not subject to the requirements of Division 1.

Division 2 (Vent Gas Control), §115.120 through §115.129, is not applicable because the site is not a bakery, nor a SOCMI operation.

VOC water separation will be performed at the site; therefore, the requirements of Division 3 (Water Separation), §115.131 through §115.139, potentially apply. However, because the VOCs present in the wastewater at the IBA plant will exhibit partial pressures below 1.5 psia, the emissions control requirements of §115.131(b) do not apply to the VOC water separation systems for this project.

The IBA plant will not be located in one of the nonattainment counties to which Division 4 applies; therefore, this Division (Industrial Wastewater), §115.160 through §115.169, is not applicable to the project.

The Plant does not operate a municipal solid waste landfill; therefore, Division 5 (Municipal Solid Waste Landfills), §115.152 through §115.159, does not apply.

The site is in San Patricio County, which is not within one of the ozone nonattainment areas to which Divisions 6 (Batch Processes) and 7 (Oil and Natural Gas Service in Ozone Nonattainment Areas) applies. Therefore, these two Divisions are not applicable to the project.

#### 4.1.5.2 Subchapter C [Volatile Organic Compound Transfer Operations]

Although the site is located in San Patricio County, the IBA plant is not subject to the requirements of Division 1 (Loading and Unloading of VOCs), §115.212 through §115.219, because the Plant's operations do not include VOC transfer operations.

There will be no vehicle fueling tanks at the Plant. Therefore, Division 2 does not apply.

The IBA plant is not subject to the requirements of Division 3 (Control of Volatile Organic Compound Leaks from Transport Vessels), §115.234 through §115.239, because the site is not located in one of the counties to which the Division applies.

In addition, the following are not applicable to the plant operations: Division 4 (Control of Vehicle Refueling Emissions [Stage II] at Motor Vehicle Fuel Dispensing Facilities), §115.240 through §115.249; and Division 5 (Control of Reid Vapor Pressure of Gasoline), §115.252 through §115.259. The IBA plant is located in San Patricio County, which is not a regulated county under these Divisions.

#### 4.1.5.3 Subchapter D [Petroleum Refining, Natural Gas Processing, and Petrochemical Processes]

None of the operations in the proposed project are subject to the requirements of Subchapter D.

#### 4.1.5.4 Subchapter E [Solvent-Using Processes]

None of the operations in the proposed project are subject to the requirements of Subchapter E.

#### 4.1.5.5 Subchapter F [Miscellaneous Industrial Sources]

The site will not be located in one of the counties that is subject to the requirements of Subchapter F.

#### 4.1.5.6 Subchapter G [Consumer-Related Sources]

ICAP will not be involved in the offering for sale, sale, supply, distribution, or manufacture of automotive windshield washer fluid for use in the State of Texas; therefore, the requirements of Subchapter G do not apply.

#### 4.1.5.7 Subchapter H [Highly-Reactive Volatile Organic Compounds]

The IBA plant will not be located in the Houston-Galveston-Brazoria area and is therefore not subject to the requirements of Subchapter H.

#### 4.1.5.8 Subchapter J [Administrative Provisions]

These provisions do not govern plant design or operation, and ICAP will comply with the procedures specified if and as they become applicable to ICAP.

#### 4.1.6 Nitrogen Compounds [30 TAC CHAPTER 117]

4.1.6.1 Subchapter B [Combustion Control at Major Industrial, Commercial, and Institutional Sources in Ozone Nonattainment Areas]

The IBA plant will be located in San Patricio County, which is not regulated by this Subchapter; therefore, the requirements of this Subchapter do not apply.

4.1.6.2 Subchapter C [Combustion Control at Major Utility Electric Generation Sources in Ozone Nonattainment Areas]

The IBA plant will not be considered a major utility electric generation source; therefore, the requirements of Subchapter C do not apply.

#### 4.1.6.3 Subchapter D [Combustion Control at Minor Sources in Ozone Nonattainment Areas]

The requirements of Subchapter D apply to sources located in the Houston-Galveston-Brazoria (HGB) and Dallas-Fort Worth 8-hour ozone nonattainment areas. These requirements do not apply to the IBA plant, which will be located in San Patricio County.

#### 4.1.6.4 Subchapter E [Multi-Region Combustion Control]

The site will not be considered a utility electric generating source; therefore, the requirements of Division 1 do not apply. The site will not operate a Portland cement kiln; therefore, the requirements of Division 2 do not apply. ICAP will not be a manufacturer, distributor, retailer, or installer of natural gas-fired water heaters, boilers, and process heaters; therefore, the requirements of Division 3 do not apply. The IBA plant will not be located in a county subject to the requirements of Division 4.

#### 4.1.6.5 Subchapter F [Acid Manufacturing]

The IBA plant will not operate an adipic acid or nitric acid manufacturing unit; therefore, the requirements of this Subchapter do not apply.

#### 4.1.6.6 Subchapter G [General Monitoring and Testing Requirements]

The compliance stack testing and emissions monitoring requirements of Subchapter G do not apply to the facilities at the site because the site will not be subject to emission specifications or operating requirements of Chapter 117, as discussed above.

#### 4.1.6.7 Subchapter H [Administrative Provisions]

The provisions of Subchapter H do not apply to chemical manufacturing plants in San Patricio County; therefore, Subchapter H does not apply to the IBA plant.

#### 4.1.7 Air Pollution Episodes [30 TAC CHAPTER 118]

These rules do not impose requirements unless and until the Commission determines the existence of an air pollution episode and issues appropriate orders. ICAP will operate the facilities in compliance with such TCEQ orders if and when issued.

#### 4.1.8 Federal Operating Permits [30 TAC CHAPTER 122]

The Plant will be subject to the federal operating permit program requirements of 30 TAC §122. Prior to the start of operations, ICAP will submit an application for a Title V Site Operating Permit (SOP).

## 4.2 Measurement of Significant Air Contaminants [30 TAC §116.111(a)(2)(B)]

Specific monitoring plans are presented in the relevant section of the Form PI-1 (Appendix A). These proposed monitoring plans comply with current TCEQ requirements and guidelines for continuous demonstration of compliance. Additional provisions for measuring the emission of significant air contaminants will be added if and as directed by the executive director and as represented in the Form PI-1 Monitoring table.

## 4.3 Best Available Control Technology [30 TAC §116.111(a)(2)(C)]

For pollutants that are not subject to PSD Review as part of this project –  $PM_{10}$ , SO<sub>2</sub>, ammonia, and individual VOC species – ICAP will operate the applicable technologies and meet the emission limits, design standards, and work practices deemed to represent BACT for the emission sources as represented in the PI-1 workbook submitted in Appendix A.

For pollutants that are subject to PSD Review as part of this project – VOC (as an ozone precursor),  $NO_{X}$ , CO, PM, and  $PM_{2.5}$  – a further evaluation of BACT is included in this section. For GHGs, the TCEQ was granted authority to implement the GHG PSD permitting program in Texas on November 10, 2014; therefore, an evaluation of BACT for GHG sources is also included in this section.

This section provides a summary of available controls, by emission unit, to justify and identify proposed BACT according to the TCEQ's three-tier approach.<sup>2</sup> Proposed BACT is evaluated and selected pursuant to TCEQ's Tier I requirements, supplemented and confirmed by an evaluation of comparable facilities from the US EPA's RACT/BACT/LAER Clearinghouse (RBLC) database. Table 4-1 summarizes sites in similar industries for which ICAP reviewed air permits and/or RBLC data to support this PSD BACT analysis.

| Operator                                                                                        | Plant Type                     | City           | State | Air Permit Number                              |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------|----------------|-------|------------------------------------------------|--|--|
| Air Liquide Large Industries U.S. LP                                                            | Hydrogen                       | Freeport       | тх    | 32274, PSDTX995M1                              |  |  |
| Air Liquide Large Industries U.S. LP                                                            | Hydrogen                       | Bayport        | тх    | 73110                                          |  |  |
| Air Liquide Large Industries U.S. LP                                                            | Hydrogen                       | La Porte       | тх    | 87575, N116                                    |  |  |
| Air Liquide Large Industries U.S. LP                                                            | Hydrogen                       | Corpus Christi | тх    | 34245                                          |  |  |
| Linde                                                                                           | Hydrogen                       | Nederland      | тх    | 172324, PSDTX1620,<br>GHGPSDTX231<br>(pending) |  |  |
| Praxair                                                                                         | Hydrogen                       | Texas City     | тх    | 19297                                          |  |  |
| Praxair                                                                                         | Hydrogen                       | Port Arthur    | тх    | 51771                                          |  |  |
| Gulf Coast Ammonia LLC                                                                          | Ammonia                        | Texas City     | тх    | 145038                                         |  |  |
| Yara Freeport LLC                                                                               | Ammonia Production             | Freeport       | тх    | 118239                                         |  |  |
| Vopak Moda Houston LLC                                                                          | Ammonia Storage/Marine Loading | Deer Park      | тх    | 151626                                         |  |  |
| Kenai Nitrogen Operations                                                                       | Hydrogen/Ammonia/Fertilizer    | Kenai          | AK    | AQ0083CPT07 [1]                                |  |  |
| Pallas Nitrogen LLC                                                                             | Hydrogen/Ammonia/Fertilizer    | Columbiana     | ОН    | P0118959 <sup>[2]</sup>                        |  |  |
| CF Industries Nitrogen, LLC                                                                     | Hydrogen/Ammonia/Fertilizer    | Donaldsonville | LA    | PSD-LA-772                                     |  |  |
| CF Industries Nitrogen, LLC                                                                     | Hydrogen/Ammonia/Fertilizer    | Port Neal      | LA    | PN 13-037                                      |  |  |
| Ingleside Clean Ammonia<br>Partners, LLC                                                        | Hydrogen/Ammonia               | Ingleside      | тх    | Pending                                        |  |  |
| [1] Plant operational but closed in 2007. Considering restart as of 2021, but not yet complete. |                                |                |       |                                                |  |  |

 Table 4-1

 Similar Industries Permit and RBLC Review Summary

[2] Permit issued, but construction never initiated. Permit cancelled.

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/airpoll\_guidance.pdf

<sup>&</sup>lt;sup>2</sup> TCEQ, *Air Pollution Control: How to Conduct a Pollution Control Evaluation APDG 6110*, Section IV – Specific Control Evaluations, January 2011, accessible at:

The proposed emission rates represented in this application in both Form PI-1 (Appendix A) and the emissions calculations (Appendix E) incorporate the emissions limits and design, equipment, work practice, operational standards, or combination thereof identified as BACT in this section.<sup>3</sup> The proposed emission standards and mass rates are based on a block one-hour averaging time, unless otherwise noted in this application.

#### 4.3.1 Cooling Towers

Cooling towers emit PM in the mist released from the top of the towers, which is known as "drift." TCEQ guidelines require that cooling towers are equipped with drift eliminators that limit drift to 0.001% or less.<sup>4</sup> The cooling towers in this project, as well as those in recently issued permits, will utilize drift eliminators that reduce drift to no more than 0.0005%. The RBLC data include these same drift elimination criteria.<sup>5</sup> The ICAP proposed cooling towers (EPNs: CTWR1 and CTWR2) will meet BACT with the use of the proposed drift eliminators.

#### 4.3.2 Auxiliary Boiler

The auxiliary boiler (EPN: BLR-AUX1), which will provide steam for use throughout the Plant, will be a natural gas- and hydrogen-fired boiler with a maximum design heat input of 188 MMBtu/hr. The unit will only be run at its maximum heat input during Plant startup operations, after which during normal operations it will run at 20% turndown rate. TCEQ guidelines require that boilers greater than 100 MMBtu/hr are fired using good combustion practices, fired with natural gas or plant fuel gas, limit NO<sub>x</sub> to 0.01 pound (lb)/MMBtu (for natural gas) and 0.015 lb/MMBtu (for plant fuel gas), limit CO to 50 parts per million by volume (ppmv) at 3% oxygen, and limit opacity to 5%.<sup>6</sup>

These BACT-based emission limits are consistent with those determined for the auxiliary boilers listed in the RBLC database.<sup>7</sup>

Although the auxiliary boiler will typically be fired below 100 MMBtu/hr, the project proposes the requirements for boilers greater than 100 MMBtu/hr for BACT for its auxiliary boiler:

- Utilize good combustion practices (limiting firing, use of low-carbon fuels, proper maintenance); and
- + Limit NO<sub>x</sub> emissions to 0.01 lb/MMBtu and CO to 50 ppmv at 3% oxygen.

<sup>&</sup>lt;sup>3</sup> Available TCEQ guidance reviewed throughout this BACT analysis for the various facilities and pollutants includes air permit technical guidance documents, air permit guidance memos, comparable site permit conditions and maximum allowable emission rate tables, and the Form PI-1 BACT section.

<sup>&</sup>lt;sup>4</sup> TCEQ Tier I BACT for cooling towers (last revised March 19, 2019; accessed September 11, 2023;

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/bact/bact-chemical.xlsx). <sup>5</sup> US EPA's RBLC Database (<u>https://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en</u>), search for "cooling towers" from January 1, 2023 through July 31, 2023.

<sup>&</sup>lt;sup>6</sup> TCEQ Tier I BACT for Boilers: >40 MMBtu/hr (last revised March 19,2019; accessed September 12, 2023; https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/bact/bact-chemical.xlsx).

<sup>&</sup>lt;sup>7</sup> US EPA's RBLC Database (<u>https://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en</u>), search for "boilers" from January 1, 2023 through July 31, 2023.

#### 4.3.3 Heaters

The project's process heaters (EPNs: H-201 and H-203) and steam superheaters (FINs/EPNs: H-202/H-201 and H-204/H-203) are natural gas- and process gas-fired heaters. The project's startup heaters (EPNs: H-590 and H-591) will be fired using only pipeline quality natural gas and will be limited to 48 hours of operation each year. TCEQ BACT guidelines for heaters the size of those proposed by the project require firing pipeline quality natural gas or process fuel gas, utilizing good combustion practices, burners with the best NO<sub>x</sub> performance given the burner configuration and gaseous fuel used, limiting NO<sub>x</sub> emissions to 0.01 lb/MMBtu and CO emissions to 50 ppmv at 3% oxygen, equipping the unit with a continuous emissions monitoring system (CEMS), and limiting opacity to 5%.<sup>8</sup> Some recently issued permits in the RBLC database that included process heaters also utilized selective non-catalytic reduction (SNCR) to limit emissions.<sup>9</sup> Startup heaters in recently issued permits in the RBLC database limited the hours of operation. The project's process heaters and steam superheaters will be equipped with selective catalytic reduction (SCR), which provides control superior to SNCR. ICAP proposes the rest of the requirements listed in this section as BACT for the project's heaters.

#### 4.3.4 Emergency Engines

New diesel-fired emergency engines are subject to 40 CFR Part 60, Subpart IIII (Standards of Performance for Stationary Compression Ignition Internal Combustion Engines). The project's diesel-fired emergency engines (EPNs: FW-PUMP1, FW-PUMP2, FW-PUMP3, EG-1, and EG-2) will be US EPA-certified engines, which will minimize emissions from the engines. To be considered an emergency engine, units must operate no more than 100 hours per year in non-emergency use. TCEQ guidelines and a search of the RBLC shows that emergency engines must meet the 40 CFR Part 60, Subpart IIII and annual non-emergency run-time limitations of 100 hours per year, limit visible emissions, and be equipped with a non-resettable run-time meter.<sup>10,11</sup> Visible emissions may not leave the property and cannot exceed 30 seconds in duration in any six-minute period as determined using US EPA Test Method 22 or equivalent. ICAP's emergency engines will meet the TCEQ and RBLC requirements as BACT.

#### 4.3.5 Flares

A majority of chemical, hydrogen, and ammonia plants use flares to control emissions from both routine and MSS activities. For this project, ICAP proposes no routine process emissions to the flares. The proposed flares will be used to control emissions from MSS activities, as quantified in this application. Both state and federal air permits require that flares meet standardized work practice requirements concerning the presence of a pilot flame, the net heating value of flared streams, and the flare tip exit velocity to demonstrate that they operate with at least 98% destruction efficiency and no visible

<sup>&</sup>lt;sup>8</sup> TCEQ Tier I BACT for Heaters (last revised March 19, 2019; accessed September 12, 2023;

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/bact/bact-chemical.xlsx). <sup>9</sup> US EPA's RBLC Database (<u>https://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en</u>), search for "process heaters" from January 1, 2023 through July 31, 2023.

 <sup>&</sup>lt;sup>10</sup> TCEQ Tier I BACT for Engines: Emergency Diesel (revised March 19,2019; accessed September 12, 2023; <u>https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/bact/bact-chemical.xlsx</u>).
 <sup>11</sup> US EPA's RBLC Database (<u>https://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en</u>), search for "emergency generator" and "fire water pump" from January 1, 2023 through July 31, 2023.

emissions.<sup>12,13</sup> These requirements are codified in 40 CFR §60.18 and 40 CFR §63.11, as well as referenced in TCEQ regulations and permit special conditions. Additionally, Texas state NSR and PSD permits also require flared gas flow measurement and flared gas heat content monitoring to confirm compliance with these standards.

ICAP proposed flares will meet BACT by complying with the flare standards in 40 CFR §60.18 and by incorporating flared gas flow monitoring and inline measurement of flared gas heat value (EPNs: FL-1, FL-2, FL-3, FL-4, FL-5).

#### 4.3.6 Atmospheric Storage Tanks

TCEQ guidelines and recently issued permits for fixed roof tanks require that tanks are diffused aluminum or painted white and utilize submerged fill.<sup>14</sup> Fixed roof tanks are utilized for small-volume storage (less than 25,000 gallons) or for products with low vapor pressures or partial pressures (less than 0.5 psia). The atmospheric storage tanks in this project store diesel (EPNs: TK-1 and TK-2), MDEA (EPNs: TK-3A/B, TK-4A/B, and TK-5A/B), wastewater (EPNs: TK-WW1, TK-WW2, TK-WW3), and contact storm water (EPN: TK-SW1). Diesel and MDEA have vapor pressures below 0.5 psia. The wastewater and contact storm water have trace amounts of volatile chemicals, which have a partial pressure below 0.5 psia. Because of the vapor pressures and partial pressures of materials stored, white tanks with submerged fill constitutes BACT for the proposed atmospheric fixed roof storage tanks.

#### 4.3.7 Wastewater Facilities

The project's wastewater treatment activities will occur in fixed roof tanks; therefore, the BACT analysis for these units is included in Section 4.3.6, "Atmospheric Storage Tanks."

#### 4.3.8 CO<sub>2</sub> Vents

Amine absorption for hydrogen- $CO_2$  separation for CCS systems is a relatively new technology with limited operating plants against which to evaluate BACT.<sup>15</sup> For a technology to be considered "best available" it must be available for the project's geographic region and have been successfully demonstrated in practice. It also must be economically reasonable. The use of CCS is uneconomic, except in consideration of recently adopted tax credits. Especially but not exclusively because the rules governing those tax credits have not yet been finalized and may not in any event persist throughout the lifetime of the plant, it is not appropriate to consider them in assessing economic reasonableness. While amine absorption for  $CO_2$  separation is not a new technology, the application of this technology to high-volume hydrogen production plants and subsequent sequestration of the  $CO_2$  in CCS infrastructure is an emerging

<sup>&</sup>lt;sup>12</sup> TCEQ Tier I BACT for Flares: Control (revised March 19,2019; accessed September 12, 2023;

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/bact/bact-chemical.xlsx). <sup>13</sup> US EPA's RBLC Database (https://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en), search for

<sup>&</sup>quot;flare" from January 1, 2023 through July 31, 2023.

<sup>&</sup>lt;sup>14</sup> TCEQ Tier I BACT for Storage Tanks: Fixed Roof with capacity < 25 Mgal or TVP <0.5 psia (revised March 19,2019; accessed September 12, 2023;

https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/bact/bact-chemical.xlsx). <sup>15</sup> US EPA's RBLC Database (<u>https://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=en</u>), search for "CO<sub>2</sub> vent" from January 1, 2023 through July 31, 2023.

technology. At this time, CCS infrastructure is limited in availability and high in cost (when available), and thus TCEQ does not yet consider CCS as Tier I BACT for hydrogen production. Nonetheless, as discussed below and based on projected CCS infrastructure availability by the time plant operations commence, ICAP is proposing CCS for this project's routine operations, which exceeds BACT, which requires only good operational practices and, where practical, reuse.

Possible control options for routine (low flow)  $CO_2$  vents includes  $CO_2$  recovery using amine absorption and reuse and good operational practices. During routine operations, ICAP proposes to capture and sequester 99% of the  $CO_2$ -rich overhead stream from the  $CO_2$  absorber column. A very small (1%) amount of this absorber overhead must vent to atmosphere as part of the engineering, technical, and safety controls for the  $CO_2$  compressor. Therefore, it is technically impracticable to capture 100% of this stream. There is not an onsite process that can reuse these  $CO_2$  vent streams. Sending the  $CO_2$  vents to the Plant's heaters as part of the fuel mix would not reduce  $CO_2$  emissions, only relocate the point of release, and using the streams as combustion fuel would generate more  $CO_2$  from the small percentage of CO in these vents. Based on this analysis, for these routine operations, using good operational practices and 99%  $CO_2$ recovery represent BACT for the project's low flow  $CO_2$  vents (EPNs: VTCO2-1, VTCO2-3).

During plant startup and maintenance activities, the  $CO_2$  absorber overhead must vent 100% of its stream to atmosphere. For startup, this venting must occur until the  $CO_2$  compressor has completed its startup sequence. This venting is short in duration and is not anticipated to occur more than eight (8) hours per year. Also, during third-party CCS infrastructure maintenance activities, venting may occur until the CCS pipeline or sequestration well is back in operation. Because the CCS infrastructure will be operated by a third party, ICAP does not have control over this duration. Therefore, ICAP has accounted for 90 days (accumulated in hours) of CCS infrastructure maintenance per year. There is not a safe technical alternative to venting this stream to atmosphere during a startup or third-party CCS maintenance event, and as discussed above using this stream as in the combustion fuel mixture does not reduce  $CO_2$ emissions. Therefore, this short-term atmospheric venting during MSS and third-party CCS maintenance activities constitutes BACT for the  $CO_2$  high flow vents (EPNs: VTCO2-2, VTCO2-4).

#### 4.3.9 Equipment Leak Fugitives

TCEQ guidelines specify use of the 28VHP leak detection and repair (LDAR) program as the appropriate level of control for new and modified facilities with uncontrolled VOC emissions from piping component leaks greater than 25 tpy.<sup>16</sup> Recently issued PSD permits that include GHG requirements require leaks of CH<sub>4</sub> to be subject to the same LDAR requirements that would otherwise apply to leaks of VOC. The same monitoring requirements that are effective at reducing VOCs are presumed to be effective for reducing GHGs as well.

The 28VHP LDAR work practice standard requires quarterly inspection of accessible valves, and pump, compressor and agitator seals in vapor and light liquid service using a portable hydrocarbon analyzer, with a leak definition of 500 ppmv VOC for valves, and 2,000 ppmv VOC for pump, compressor, and agitator

<sup>&</sup>lt;sup>16</sup> TCEQ Tier I BACT for Fugitives: Piping and Equipment Leak (revised March 19,2019; accessed September 12, 2023; <u>https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/bact/bact-chemical.xlsx</u>).

seals. In addition, the 28CNTQ work practice standard, which exceeds BACT can be used to further reduce emissions by monitoring flanges and connectors quarterly, with a leak definition of 500 ppmv VOC.

The use of the 28VHP and 28CNTQ programs meets or exceeds BACT for PSD piping component fugitive emissions (EPN: FUG).

## 4.4 New Source Performance Standards (NSPS) [30 TAC §116.111(a)(2)(D)]

Facilities at the IBA plant will be subject to and comply with the following subparts of 40 CFR Part 60:

- + Subpart Db (Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units) applies to the auxiliary boiler (EPN: BLR-AUX1); and
- + Subpart IIII (Standards of Performance for Stationary Compression Ignition Internal Combustion Engines) applies to the emergency fire water pump engines (EPNs: FW-PUMP1, FW-PUMP2, FW-PUMP3) and generator engines (EPNs: EG-1, EG-2).

Although there are several storage tanks included in the proposed project, none of them are subject to Subpart Kb requirements for the following reasons:

- + The MDEA tanks (EPNs: TK-3A/B, TK-4A/B, TK-5A/B) meet the size (75 cubic meters or 19,812 gallons) and construction date applicability criteria. However, the vapor pressure of MDEA is 0.0022 psia, which is below the applicability threshold of 15.0 kilopascals (2.18 psia); therefore, these tanks are exempt from NSPS Subpart Kb.
- + The diesel tanks (EPNs: TK-1, TK-2) are also below the size and vapor pressure applicability criteria.
- Ammonia is not an organic compound, therefore the ammonia tanks (FINs: T-801, T-802, T-803, T-804) are not subject to this requirement.

The Plant will also be subject to and comply with the general requirements listed in 40 CFR Part 60, Subpart A, which apply to sources subject to Part 60 regulations.

## 4.5 National Emission Standards for Hazardous Air Pollutants (NESHAP) [30 TAC §116.111(a)(2)(E)]

Because it is a chemical manufacturing plant, the proposed IBA plant is subject to and will comply with the requirements of 40 CFR Part 61, Subpart FF (National Emission Standard for Benzene Waste Operations [BWON]). The Total Annual Benzene (TAB) quantity at the proposed site will be less than 1 megagram (Mg) per year; therefore, the Plant is subject only to the initial notification requirements of this subpart. The Plant will also be subject to and comply with the general requirements listed in 40 CFR Part 61, Subpart A, which apply to sources subject to Part 61 NESHAP regulations.

## 4.6 NESHAP for Source Categories [30 TAC §116.111(a)(2)(F)]

The Plant is not a major source of HAP, so potentially applicable regulations in Part 63 that apply only to major HAP sources do not apply to the project. However, there are two regulations that are applicable to

area (minor) HAP sources that are relevant to the project. The facilities in this permit application will comply with the following applicable requirements of 40 CFR Part 63:

+ Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) applies to the emergency fire water pump engines (EPNs: FW-PUMP1, FW-PUMP2, FW-PUMP3) and generator engines (EPNs: EG-1, EG-2).

The Plant will also be subject to and comply with the general requirements listed in 40 CFR Part 63, Subpart A, which apply to sources subject to Part 63 regulations.

## 4.7 Performance Demonstration [30 TAC §116.111(a)(2)(G)]

The facilities will perform as represented in this permit application. Upon request of the Executive Director of the TCEQ, additional engineering data, dispersion modeling, monitoring or stack testing data will be provided for the emission sources in this application.

## 4.8 Nonattainment Review [30 TAC §116.111(a)(2)(H)]

Nonattainment Review does not apply to the project. Refer to Section 3.1 of this permit application for a discussion of Nonattainment Review.

### 4.9 Prevention of Significant Deterioration (PSD) Review [30 TAC §116.111(a)(2)(I)]

Prevention of Significant Deterioration Review applies to the project. Refer to Section 3.2 of this permit application for a discussion of PSD Review.

## 4.10 Air Dispersion Modeling [30 TAC §116.111(a)(2)(J)]

The Electronic Modeling Evaluation Workbook (EMEW) and PSD modeling protocol for this project, which include model options, source parameters, and operating scenarios, are submitted with this application.

## 4.11 Hazardous Air Pollutants [30 TAC §116.111(a)(2)(K)]

The Plant will be a minor source of HAP and operations at the site will not be considered an affected source as defined in §116.15(1) (relating to FCAA §112(g) Definitions); therefore, the requirements of 30 TAC §116 Subchapter E do not apply.

## 4.12 Mass Cap and Trade Allowances [30 TAC §116.111(a)(2)(L)]

The IBA plant will not be subject to the requirements of 30 TAC §101 Subchapter H, Division 3 (Mass Emission Cap and Trade Program), as the program applies only to facilities located in the HGB ozone nonattainment area. The Plant will be located in San Patricio County and not within the HGB nonattainment area.

Initial Air Quality Permit Application Ingleside Clean Ammonia Partners, LLC Ingleside Blue Ammonia October 2023

## 4.13 Public Notice Requirements [30 TAC §116.111(b)]

ICAP will comply with the applicable requirements specified in 30 TAC Chapter 39 and Chapter 55 relating to public notice and case hearings, as represented in this application in the Public Notice section of Form PI-1 (Appendix A) and the Public Involvement Plan (Appendix D).

## 5.0 DISASTER REVIEW

Due to the onsite quantity of more than 10,000 pounds of ammonia, the IBA plant will be subject to and comply with federal Risk Management Plan (RMP) requirements found in 40 CFR Part 68. Additionally, ammonia is regulated under the Occupational Health and Safety Administration (OSHA) Process Safety Management (PSM) program as a highly hazardous chemical. ICAP will comply with the disaster review requirements for air permitting by complying with the RMP and PSM programs.

Prior to initiating operation of the Plant, ICAP will prepare its RMP and PSM programs and also will submit the required RMP executive summary and release scenarios to the US EPA via the "RMP eSubmit" platform.



| I. Applicant Information                                                                                                                                                                                                                                                                                                                                            | I. Applicant Information                                                        |                                                                                                                                                             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| I acknowledge that I am submit<br>necessary attachments. Except<br>column width, I have not chang<br>not limited to changing formula                                                                                                                                                                                                                                | ting an authorize<br>for inputting the<br>ed the TCEQ app<br>as, formatting, co | d TCEQ application workbook and any<br>requested data and adjusting row height and<br>lication workbook in any way, including but<br>ntent, or protections. |  |  |  |  |  |
| A. Company Information                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| Company or Legal Name:                                                                                                                                                                                                                                                                                                                                              |                                                                                 | Ingleside Clean Ammonia Partners, LLC                                                                                                                       |  |  |  |  |  |
| Permits are issued to either the facility owner or operator, commonly referred to as the applicant or permit holder. List the legal name of the company, corporation, partnership, or person who is applying for the permit. We will verify the legal name with the Texas Secretary of State at (512) 463-5555 or at the link below:<br>https://www.sos.state.tx.us |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| Texas Secretary of State Charter                                                                                                                                                                                                                                                                                                                                    | /Registration                                                                   | 805083647                                                                                                                                                   |  |  |  |  |  |
| Number (if given):                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| B. Company Official Contact In                                                                                                                                                                                                                                                                                                                                      | formation: must n                                                               | ot be a consultant                                                                                                                                          |  |  |  |  |  |
| Prefix (Mr., Ms., Dr., etc.):                                                                                                                                                                                                                                                                                                                                       | Mr.                                                                             |                                                                                                                                                             |  |  |  |  |  |
| First Name:                                                                                                                                                                                                                                                                                                                                                         | Javier (                                                                        |                                                                                                                                                             |  |  |  |  |  |
| Last Name:                                                                                                                                                                                                                                                                                                                                                          | del Olmo                                                                        |                                                                                                                                                             |  |  |  |  |  |
| Title:                                                                                                                                                                                                                                                                                                                                                              | Vice President,                                                                 | Operations for Ingleside Clean Ammonia Partners, LLC                                                                                                        |  |  |  |  |  |
| Mailing Address:                                                                                                                                                                                                                                                                                                                                                    | ailing Address: 915 North Eldridge Parkway 915 North Eldridge Parkway           |                                                                                                                                                             |  |  |  |  |  |
| Address Line 2:                                                                                                                                                                                                                                                                                                                                                     | Suite 1100                                                                      |                                                                                                                                                             |  |  |  |  |  |
| City:                                                                                                                                                                                                                                                                                                                                                               | Houston                                                                         |                                                                                                                                                             |  |  |  |  |  |
| State:                                                                                                                                                                                                                                                                                                                                                              | TX                                                                              |                                                                                                                                                             |  |  |  |  |  |
| ZIP Code:                                                                                                                                                                                                                                                                                                                                                           | 77079                                                                           |                                                                                                                                                             |  |  |  |  |  |
| Telephone Number:                                                                                                                                                                                                                                                                                                                                                   | <mark>713-627-5400</mark>                                                       |                                                                                                                                                             |  |  |  |  |  |
| Fax Number:                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| Email Address:                                                                                                                                                                                                                                                                                                                                                      | javier.delolmo@                                                                 | enbridge.com                                                                                                                                                |  |  |  |  |  |
| C. Technical Contact Information<br>representations on behalf of the a<br>in a cover letter.                                                                                                                                                                                                                                                                        | on: This person m<br>pplicant and may                                           | ust have the authority to make binding agreements and be a consultant. Additional technical contact(s) can be provided                                      |  |  |  |  |  |
| Prefix (Mr., Ms., Dr., etc.):                                                                                                                                                                                                                                                                                                                                       | Mr.                                                                             |                                                                                                                                                             |  |  |  |  |  |
| First Name:                                                                                                                                                                                                                                                                                                                                                         | Clayton                                                                         |                                                                                                                                                             |  |  |  |  |  |
| Last Name:                                                                                                                                                                                                                                                                                                                                                          | Curtis                                                                          |                                                                                                                                                             |  |  |  |  |  |
| Title:                                                                                                                                                                                                                                                                                                                                                              | Director Regulatory Compliance USGC Terminals                                   |                                                                                                                                                             |  |  |  |  |  |
| Company or Legal Name:                                                                                                                                                                                                                                                                                                                                              | Enbridge Inc.                                                                   |                                                                                                                                                             |  |  |  |  |  |
| Mailing Address:                                                                                                                                                                                                                                                                                                                                                    | 915 North Eldridge Parkway                                                      |                                                                                                                                                             |  |  |  |  |  |
| Address Line 2:                                                                                                                                                                                                                                                                                                                                                     | Suite 1100                                                                      |                                                                                                                                                             |  |  |  |  |  |
| City:                                                                                                                                                                                                                                                                                                                                                               | ity: Houston                                                                    |                                                                                                                                                             |  |  |  |  |  |
| State: TX                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| ZIP Code: 77079                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| Felephone Number:         713-627-5400                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| Fax Number:                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                                                                                             |  |  |  |  |  |
| Email Address:                                                                                                                                                                                                                                                                                                                                                      | clayton.curtis@                                                                 | enbridge.com                                                                                                                                                |  |  |  |  |  |

#### D. Assigned Numbers

II Delinguent Fees and Penalties

The CN and RN below are assigned when a Core Data Form is initially submitted to the Central Registry. The RN is also assigned if the agency has conducted an investigation or if the agency has issued an enforcement action. If these numbers have not yet been assigned, leave these questions blank and include a Core Data Form with your application submittal. See Section VI.B. below for additional information.

| Enter the CN. The CN is a unique number given to each business, governmental body, association, individual, or other entity that owns, operates, is responsible for, or is affiliated with a regulated entity.                                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Enter the RN. The RN is a unique agency assigned number given to each person, organization, place, or thing that is of environmental interest to us and where regulated activities will occur. The RN replaces existing air account numbers. The RN for portable units is assigned to the unit itself, and that same RN should be used when applying for authorization at a different location. |  |

| Does the applicant have unpaid delinquent fees and/or penalties owed to the TCEQ?                   | No |
|-----------------------------------------------------------------------------------------------------|----|
| This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the  |    |
| Office of the Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fee |    |
| and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ  |    |
| Web site at the link below:                                                                         |    |
| https://www.tceq.texas.gov/agency/financial/fees/delin                                              |    |

III. Permit Information

A. Permit and Action Type (multiple may be selected, leave no blanks)

Additional information regarding the different NSR authorizations can be found at the link below: https://www.tceg.texas.gov/permitting/air/guidance/authorize.html

Select from the dropdown the type of action being requested for each permit type. If that permit type does not apply, you MUST select "Not applicable".

Provide all assigned permit numbers relevant for the project. Leave blank if the permit number has not yet been assigned.

| Permit Type                                                                                                                                                                                                                                                                                               | Action Type Requested             | Permit Number (if assigned) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                           | (do not leave blank)              |                             |
| Minor NSR (can be a Title V major source): Not<br>applicable, Initial, Amendment, Renewal, Renewal<br>Certification, Renewal/Amendment,<br>Relocation/Alteration, Change of Location,<br>Alteration, Extension to Start of Construction                                                                   | Initial                           |                             |
| Special Permit: Not applicable, Amendment,<br>Renewal, Renewal Certification,<br>Renewal/Amendment, Alteration, Extension to<br>Start of Construction                                                                                                                                                     | Not applicable                    |                             |
| De Minimis: Not applicable, Initial                                                                                                                                                                                                                                                                       | Not applicable                    |                             |
| Flexible: Not applicable, Initial, Amendment,<br>Renewal, Renewal Certification,<br>Renewal/Amendment, Alteration, Extension to<br>Start of Construction                                                                                                                                                  | Not applicable                    |                             |
| PSD: Not applicable, Initial, Major Modification                                                                                                                                                                                                                                                          | Initial                           |                             |
| Nonattainment: <i>Not applicable, Initial, Major</i><br><i>Modification</i>                                                                                                                                                                                                                               | Not applicable                    |                             |
| HAP Major Source [FCAA § 112(g)]: Not<br>applicable, Initial, Major Modification                                                                                                                                                                                                                          | Not applicable                    |                             |
| PAL: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration                                                                                                                                                                                                                           | Not applicable                    |                             |
| GHG PSD: Not applicable, Initial, Major<br>Modification, Voluntary Update                                                                                                                                                                                                                                 | Initial                           |                             |
| <b>GHG projects:</b> List the non-GHG applications<br>(pending or being submitted) that are associated<br>with the project. Note: All preconstruction<br>authorizations (including authorization for<br>emissions of greenhouse gases, if applicable) must<br>be obtained prior to start of construction. | Initial minor NSR and initial PSD | applications.               |

| B. MSS Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                    |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| How are/will MSS activities for sources associated with this project be authorized?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Combination (lis                                       | on (list below)                                                                                                                                    |    |
| List the permit number, registration number, and/or<br>PBR number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | One or more of t<br>106.261, 106.26<br>may be applicab | one or more of the following, if needed on an ad hoc basis:<br>06.261, 106.262, 106.263, 106.433, 106.452, 106.454, others as<br>nay be applicable |    |
| C. Consolidating NSR Permits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                                                                                    |    |
| Will this permit be consolidated into another NSR permit with this action?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                                                                                    | No |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                    |    |
| Will NCD normite be concelleded into this permit wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | th this action?                                        |                                                                                                                                                    | No |
| Will NSR permits be consolidated into this permit wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | th this action?                                        |                                                                                                                                                    | NO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                    |    |
| D. Incorporation of Standard Permits, Standard Exemptions, and/or Permits By Rule (PBR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                    |    |
| To ensure protectiveness, previously issued authorizations (standard permits, standard exemptions, or PBRs)<br>including those for MSS, are incorporated into a permit either by consolidation or by reference.<br>-Authorizations entirely incorporated by consolidation will be voided when the project is complete, and the<br>sources and allowable emissions will be added to the NSR permit's MAERT.<br>-Authorizations incorporated by reference will be referenced with the final action for this project but will not be<br>voided. Sources will continue to be authorized in the current manner. |                                                        |                                                                                                                                                    |    |
| At the time of renewal and/or amendment, consolidation (in some cases) may be voluntary and referencing is mandatory. More guidance regarding incorporation can be found in 30 TAC § 116.116(d)(2), 30 TAC § 116.615(3) and in this memo (link below):                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                                                                                                                    |    |
| https://www.tceq.texas.gov/assets/public/permitting/air/memos/pbr_spc06.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                    |    |
| Are there any standard permits, standard exemptions, or PBRs to be incorporated by reference?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | No                                                                                                                                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                    |    |
| Are there any PBR, standard exemptions, or standa<br>associated to be incorporated by consolidation? <b>Not</b><br>calculations, a BACT analysis, and an impacts analy<br>attached to this application at the time of submittal fe<br>authorization to be incorporated by consolidation.                                                                                                                                                                                                                                                                                                                   | rd permits<br>re: Emission<br>/sis must be<br>or any   | No                                                                                                                                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                    |    |
| E. Associated Federal Operating Permits                                                                  |              |     |
|----------------------------------------------------------------------------------------------------------|--------------|-----|
| Is this facility located at a site required to obtain a site operating permit (SOP) or general operating |              | Yes |
| permit (GOP)?                                                                                            |              |     |
| Is a SOP or GOP review pending for this source, are                                                      | ea, or site? | No  |
| If required to obtain a SOP or GOP, list all                                                             | TBD          |     |
| associated permit number(s). If no associated                                                            |              |     |
| permit number has been assigned yet, enter "TBD":                                                        |              |     |

| IV. Facility Location and General Information                                                                                                                                                                                                                          |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| A. Location                                                                                                                                                                                                                                                            |                                                    |
| County: Enter the county where the facility is physically located.                                                                                                                                                                                                     | San Patricio                                       |
| TCEQ Region:                                                                                                                                                                                                                                                           | Region 14                                          |
| County attainment status:                                                                                                                                                                                                                                              | attainment or unclassified for all pollutants      |
| Street Address:                                                                                                                                                                                                                                                        | 1450 Lexington Blvd                                |
| City: If the address is not located in a city, then<br>enter the city or town closest to the facility, even if it<br>is not in the same county as the facility.                                                                                                        | Ingleside                                          |
| ZIP Code: Include the ZIP Code of the physical facility site, not the ZIP Code of the applicant's mailing address.                                                                                                                                                     | 78362                                              |
| Site Location Description: If there is no street<br>address, provide written driving directions to the<br>site. Identify the location by distance and direction<br>from well-known landmarks such as major highway<br>intersections.                                   |                                                    |
| Is this a project for a lead smelter, concrete crushing facility?                                                                                                                                                                                                      | g facility, and/or a hazardous waste management No |
|                                                                                                                                                                                                                                                                        |                                                    |
| B. General Information                                                                                                                                                                                                                                                 |                                                    |
| Site Name:                                                                                                                                                                                                                                                             | Ingleside Blue Ammonia Plant                       |
| Area Name: Must indicate the general type of<br>operation, process, equipment or facility. Include<br>numerical designations, if appropriate. Examples<br>are Sulfuric Acid Plant and No. 5 Steam Boiler.<br>Vague names such as Chemical Plant are not<br>acceptable. | Blue Ammonia Production Trains 1 and 2             |
| Are there any schools located within 3,000 feet of the site boundary?                                                                                                                                                                                                  | No                                                 |

General

| C. Portable Facility                                                       |                                                                                                                        |                                                                                 |                     |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------|--|
| ermanent or portable facility? Permanent                                   |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
| D. Industry Type                                                           |                                                                                                                        |                                                                                 |                     |  |
| Principal Company Product/Busine                                           | SS:                                                                                                                    | Blue Ammonia Production                                                         |                     |  |
| A list of SIC codes can be found at                                        | the link below:                                                                                                        |                                                                                 |                     |  |
| https://www.naics.com/sic-codes-in                                         | <u>dustry-drilldown/</u>                                                                                               | -                                                                               |                     |  |
| Principal SIC code:                                                        |                                                                                                                        | 2873                                                                            |                     |  |
| NAICS codes and conversions betw                                           | ween NAICS and                                                                                                         | SIC Codes are available at the link below:                                      |                     |  |
| https://www.census.gov/eos/www/r                                           | <u>naics/</u>                                                                                                          |                                                                                 |                     |  |
| Principal NAICS code:                                                      |                                                                                                                        | 325311                                                                          |                     |  |
| E. State Senator and Representa                                            | tive for this site                                                                                                     |                                                                                 |                     |  |
| This information can be found at th                                        | e link below (note                                                                                                     | e, the website is not compatible to Internet Expl                               | orer):              |  |
| https://wrm.capitol.texas.gov/                                             |                                                                                                                        |                                                                                 |                     |  |
| State Senator:                                                             |                                                                                                                        | Senator Morgan LaMantia                                                         |                     |  |
| District:                                                                  |                                                                                                                        | 27                                                                              |                     |  |
| State Representative:                                                      |                                                                                                                        | Representative J. M. Lozano                                                     |                     |  |
| District:                                                                  |                                                                                                                        | 43                                                                              |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
| V. Project Information                                                     |                                                                                                                        |                                                                                 |                     |  |
| A. Description                                                             |                                                                                                                        |                                                                                 |                     |  |
| Provide a <b>brief</b> description of the                                  | ICAP proposes                                                                                                          | to construct a blue ammonia production operation                                | on. The Plant will  |  |
| project that is requested (describe                                        | onsist of two trains, each with the capacity to produce 4,000 metric tons per day of                                   |                                                                                 |                     |  |
| the what, not the how and why).                                            | blue ammonia b                                                                                                         | lue ammonia based on natural gas feed, with an overall CO2 product capture rate |                     |  |
| Limited to 500 characters.                                                 | of 95% for all co                                                                                                      | ontinuous users of natural gas at the Plant being                               | g captured and sent |  |
|                                                                            | via pipeline for c                                                                                                     | via pipeline for offsite carbon sequestration.                                  |                     |  |
| B. Project Timing                                                          |                                                                                                                        |                                                                                 |                     |  |
| Authorization must be obtained for                                         | Authorization must be obtained for many projects before beginning construction. Construction is broadly interpreted as |                                                                                 |                     |  |
| anything other than site clearance of                                      | or site preparatio                                                                                                     | n. Enter the date as "Month Date, Year" (e.g. J                                 | uly 4, 1776).       |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
| Projected Start of Construction:                                           | August 1, 2025                                                                                                         |                                                                                 |                     |  |
| Projected Start of Operation:                                              | April 1, 2028                                                                                                          |                                                                                 |                     |  |
| C. Enforcement Projects                                                    |                                                                                                                        |                                                                                 |                     |  |
| Is this application in response to, o                                      | r related to, an a                                                                                                     | gency investigation, notice of violation, or                                    | No                  |  |
| enforcement action?                                                        |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
| D. Operating Schedule                                                      |                                                                                                                        | 0700.4                                                                          |                     |  |
| Will sources in this project be authorized to operate 8760 hours per year? |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |
|                                                                            |                                                                                                                        |                                                                                 |                     |  |

| VI. Application Materials                                                                                  |                   |
|------------------------------------------------------------------------------------------------------------|-------------------|
| All representations regarding construction plans and operation procedures contained in the permit app      | lication shall be |
| conditions upon which the permit is issued. (30 TAC § 116.116)                                             |                   |
| A. Confidential Application Materials                                                                      |                   |
| Is confidential information submitted with this application?                                               | No                |
|                                                                                                            |                   |
|                                                                                                            |                   |
|                                                                                                            |                   |
|                                                                                                            |                   |
|                                                                                                            |                   |
|                                                                                                            |                   |
|                                                                                                            |                   |
| B. Is the Core Data Form (Form 10400) attached? Link to form and instructions below.                       | N/A               |
|                                                                                                            |                   |
| C. Is a current area map attached?                                                                         | Yes               |
| Is the area map a current map with a true north arrow, an accurate graduated scale, the entire plant       | Yes               |
| property, the location of the property relative to prominent geographical features including, but not      |                   |
| limited to, highways, roads, streams, and significant landmarks such as buildings, residences,             |                   |
| schools, parks, hospitals, day care centers, and churches?                                                 |                   |
| Does the map show a 3,000-foot radius from the property boundary?                                          | Yes               |
| D. Is a plot plan attached?                                                                                | Yes               |
| Does your plot plan clearly show a north arrow, an accurate graduated scale, all property lines, all       | Yes               |
| emission points, buildings, tanks, process vessels, other process equipment, and two bench mark            |                   |
| locations?                                                                                                 |                   |
| Does your plot plan identify all emission points on the affected property, including all emission points   | Yes               |
| authorized by other air authorizations, construction permits, PBRs, special permits, and standard          |                   |
| permits?                                                                                                   |                   |
| Did you include a table of emission points indicating the authorization type and authorization identifier, | Yes               |
| such as a permit number, registration number, or rule citation under which each emission point is          |                   |
| currently authorized?                                                                                      |                   |
| E. Is a process flow diagram attached?                                                                     | Yes               |
| Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw          | Yes               |
| materials to be used in the process; all major processing steps and major equipment items; individual      |                   |
| emission points associated with each process step; the location and identification of all emission         |                   |
| abatement devices; and the location and identification of all waste streams (including wastewater          |                   |
| streams that may have associated air emissions)?                                                           |                   |
| F. Is a process description attached?                                                                      | Yes               |
| Does the process description emphasize where the emissions are generated, why the emissions must           | Yes               |
| be generated, what air pollution controls are used (including process design features that minimize        |                   |
| emissions), and where the emissions enter the atmosphere?                                                  |                   |
| Does the process description also explain how the facility or facilities will be operating when the        | Yes               |
| maximum possible emissions are produced?                                                                   |                   |
| G. Is a detailed list of requested actions included in the application? This list can be included in       | Yes               |
| the project description.                                                                                   |                   |

| H. Are detailed calculations attached? Calculations must be provided for each source with new<br>or changing emission rates. For example, a new source, changing emission factors,<br>decreasing emissions, consolidated sources, etc. Calculations do not need to be submitted for<br>sources without any proposed emission rate changes. Note: the preferred format is an<br>electronic workbook (such as Excel) with all formulas viewable for review. | Yes |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Are emission rates and associated calculations for planned MSS facilities and related activities attached?                                                                                                                                                                                                                                                                                                                                                | Yes |
| I. Is a material balance (Table 2, Form 10155) attached?                                                                                                                                                                                                                                                                                                                                                                                                  | N/A |

| J. Is a list of MSS activities attached?                                                                                                                                                                | Yes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Are the MSS activities listed and discussed separately, each complete with the authorization mechanism or emission rates, frequency, duration, and supporting information if authorized by this permit? | Yes |
| K. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101, 111, 112, 113, 115, and 117?                                                                              | Yes |
| For all applicable chapters, does the discussion include how the facility will comply with the requirements of the chapter?                                                                             | Yes |
| For all not applicable chapters, does the discussion include why the chapter is not applicable?                                                                                                         | Yes |
| L. Are all other required tables, calculations, and descriptions attached?                                                                                                                              | Yes |

### VII. Signature

The owner or operator of the facility must apply for authority to construct. The appropriate company official (owner, plant manager, president, vice president, or environmental director) must sign all copies of the application. The applicant's consultant cannot sign the application.

This application must be submitted and signed in STEERS.

# Texas Commission on Environmental Quality

# Form PI-1 General Application

Technical

| I. Additional Questions for Specific NSR Minor Permit Actions |  |  |  |  |
|---------------------------------------------------------------|--|--|--|--|
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |
|                                                               |  |  |  |  |

| _ | _ | _ |  |
|---|---|---|--|
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |

| Techni | i <b>cal</b> Compa | Company: Ingleside Clean Ammonia Partners, LLC |  |
|--------|--------------------|------------------------------------------------|--|
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |
|        |                    |                                                |  |

**Texas Commission on Environmental Quality** 

Form PI-1 General Application

Date: October 12, 2023 Permit #: To be assigned

| VIII. I | Federal | Regulatory | Questions |
|---------|---------|------------|-----------|
|---------|---------|------------|-----------|

Indicate if any of the following requirements apply to the proposed facility. Note that some federal regulations apply to minor sources. Enter all applicable Subparts.

| A. Title 40 CFR Part 60                                                                 |                          |
|-----------------------------------------------------------------------------------------|--------------------------|
| Do NSPS subpart(s) apply to a<br>facility in this application?                          | Yes                      |
| List applicable subparts you will<br>demonstrate compliance with (e.g.<br>Subpart M)    | Subparts A, Db, and IIII |
| B. Title 40 CFR Part 61                                                                 |                          |
| Do NESHAP subpart(s) apply to a facility in this application?                           | Yes                      |
| List applicable subparts you will<br>demonstrate compliance with<br>(e.g. Subpart BB)   | Subparts A and FF        |
| C. Title 40 CFR Part 63                                                                 |                          |
| Do MACT subpart(s) apply to a<br>facility in this application?                          | Yes                      |
| List applicable subparts you will<br>demonstrate compliance with (e.g.<br>Subpart VVVV) | Subparts A and ZZZ       |

#### IX. Emissions Review

#### A. Impacts Analysis

Any change that may result in an increase in off-property concentrations of air contaminants requires an air quality impacts demonstration, which may include a qualitative analysis, the MERA, and/or modeling. Information regarding the air quality impacts demonstration must be provided with the application and show compliance with all state and federal requirements. Detailed requirements for the information necessary to make the demonstration are listed on the Impacts sheet.

| Are there any increases in short-term and/or long-term allowable emission rates?       Yes         Can all the emission rate increases be attributed to speciation of currently authorized PM emissions and/or revisions of AP-42 or TCEQ guidance?       No         Are there any new or modified control devices or emission sources?       Yes         Are there any changes to emission point discharge parameters? Consider all parameters on the Stack No       Parameters sheet, including location.         Will any PBR registrations, standard permit, or standard exemptions be incorporated by consolidation?       No         Does this project require an impacts analysis?       Yes         Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?       No |                                                                                                                                          |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Can all the emission rate increases be attributed to speciation of currently authorized PM emissions and/or revisions of AP-42 or TCEQ guidance?       No         Are there any new or modified control devices or emission sources?       Yes         Are there any changes to emission point discharge parameters? Consider all parameters on the Stack No       Parameters sheet, including location.         Will any PBR registrations, standard permit, or standard exemptions be incorporated by consolidation?       No         Does this project require an impacts analysis?       Yes         Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?       No                                                                                                    | Are there any increases in short-term and/or long-term allowable emission rates?                                                         | Yes |
| and/or revisions of AP-42 or TCEQ guidance?       Yes         Are there any new or modified control devices or emission sources?       Yes         Are there any changes to emission point discharge parameters? Consider all parameters on the Stack No       No         Parameters sheet, including location.       Will any PBR registrations, standard permit, or standard exemptions be incorporated by       No         Will any PBR registrations, standard permit, or standard exemptions be incorporated by       No         Does this project require an impacts analysis?       Yes         Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?       No                                                                                                      | Can all the emission rate increases be attributed to speciation of currently authorized PM emissions                                     | No  |
| Are there any new or modified control devices or emission sources?       Yes         Are there any changes to emission point discharge parameters? Consider all parameters on the Stack No       No         Parameters sheet, including location.       No         Will any PBR registrations, standard permit, or standard exemptions be incorporated by consolidation?       No         Does this project require an impacts analysis?       Yes         Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?       No                                                                                                                                                                                                                                                  | and/or revisions of AP-42 or TCEQ guidance?                                                                                              |     |
| Are there any changes to emission point discharge parameters? Consider all parameters on the Stack No       No         Parameters sheet, including location.       Will any PBR registrations, standard permit, or standard exemptions be incorporated by consolidation?       No         Does this project require an impacts analysis?       Yes         Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?       No                                                                                                                                                                                                                                                                                                                                                  | Are there any new or modified control devices or emission sources?                                                                       | Yes |
| Will any PBR registrations, standard permit, or standard exemptions be incorporated by consolidation?       No         Does this project require an impacts analysis?       Yes         Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Are there any changes to emission point discharge parameters? Consider all parameters on the Stack Parameters sheet, including location. | No  |
| Does this project require an impacts analysis?       Yes         Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Will any PBR registrations, standard permit, or standard exemptions be incorporated by consolidation?                                    | No  |
| Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Does this project require an impacts analysis?                                                                                           | Yes |
| Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as defined in Appendix D of MERA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |     |
| defined in Appendix D of MERA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Will off property impacts for any of the pollutants require Tier III Toxicology Effects Evaluation as                                    | No  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | defined in Appendix D of MERA?                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |     |

If the proposed facility will handle sufficient quantities of certain chemicals which, if released accidentally, would cause off-property impacts that could be immediately dangerous to life and health, a disaster review analysis may be required as part of the application. Contact the appropriate NSR permitting section for assistance at (512) 239-1250. Additional Guidance can be found at the link below:

https://www.tceg.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/disrev-factsheet.pdf

| Does this application involve any air contaminants for which a disaste | Yes                 |  |
|------------------------------------------------------------------------|---------------------|--|
| If Yes, list which air contaminants require a disaster review.         | Ammonia (anhydrous) |  |

#### C. Air Pollutant Watch List

Certain areas of the state have concentrations of specific pollutants that are of concern. The TCEQ has designated these portions of the state as watch list areas. Location of a facility in a watch list area could result in additional restrictions on emissions of the affected air pollutant(s) or additional permit requirements. The location of the areas and pollutants of interest can be found at the link below:

https://www.tceq.texas.gov/toxicology/apwl/apwl.html

| Is the proposed facility located in a watch list area? |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                                        |  |  |  |  |  |  |  |  |
|                                                        |  |  |  |  |  |  |  |  |
|                                                        |  |  |  |  |  |  |  |  |

| D. Mass Emissions Cap and Trade                          |                       |  |
|----------------------------------------------------------|-----------------------|--|
| Is this facility located at a site within the Houston/Ga | No                    |  |
| Fort Bend, Galveston, Harris, Liberty, Montgomery,       | and waller Counties)? |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
| X. Additional Requirements                               |                       |  |
| A. Bulk Fuel Terminals                                   |                       |  |
| Is this project for a bulk fuel terminal?                | No                    |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
|                                                          |                       |  |
| B. Plant Fuel Gas Facilities                             |                       |  |
| Does this site utilize plant fuel gas?                   | Yes                   |  |

| Permit primary industry (must be selected for workbook to function) Chemical / Energy |                                                           |                             |                                |                               |                       |                                |                             |                                                |                                             |                               |                               |                                      |                               |                                                                    |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|-----------------------|--------------------------------|-----------------------------|------------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Action Requested (only<br>1 action per FIN)                                           | Include these<br>emissions in<br>annual (tpy)<br>summary? | Facility ID<br>Number (FIN) | Emission Point<br>Number (EPN) | Source Name                   | Pollutant             | Current Short-<br>Term (lb/hr) | Current Long-<br>Term (tpy) | Consolidated<br>Current Short-<br>Term (lb/hr) | Consolidated<br>Current Long-<br>Term (tpy) | Proposed Shor<br>Term (lb/hr) | t Proposed Long<br>Term (tpy) | -Short-Term<br>Difference<br>(lb/hr) | Long-Term<br>Difference (tpy) | Unit Type (Used for reviewing BACT and<br>Monitoring Requirements) |
| New/Modified                                                                          | Yes                                                       | CTWR1                       | CTWR1                          | Cooling Tower 1               | PM                    |                                |                             |                                                |                                             | 27.97                         | 85.67                         | 27.97                                | 85.67                         | Cooling Tower                                                      |
|                                                                                       |                                                           |                             |                                |                               | PM10                  |                                |                             |                                                |                                             | 0.12                          | 0.36                          | 0.12                                 | 0.36                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | NH3                   |                                |                             |                                                |                                             | 1.96                          | 8.58                          | 1.96                                 | 8.58                          |                                                                    |
| New/Modified                                                                          | Yes                                                       | CTWR2                       | CTWR2                          | Cooling Tower 2               | PM                    |                                |                             |                                                |                                             | 27.97                         | 85.67                         | 27.97                                | 85.67                         | Cooling Tower                                                      |
|                                                                                       | -                                                         |                             | _                              |                               | PM10                  |                                |                             | -                                              |                                             | 0.12                          | 0.36                          | 0.12                                 | 0.36                          |                                                                    |
| N                                                                                     | Maa                                                       |                             |                                | Auguiliana Dailan             | NH3                   |                                |                             |                                                |                                             | 1.96                          | 8.58                          | 1.96                                 | 8.58                          | Deilem Limid and Oce Fuel & 40 MMDtaller                           |
| INEW/IVIODITIED                                                                       | res                                                       | BLR-AUX1                    | BLR-AUX1                       | Auxiliary Boller              | NOC                   |                                |                             |                                                |                                             | 1.01                          | 0.75                          | 1.01                                 | 0.75                          | Boller: Liquid and Gas Fuel, > 40 MMBtu/nr                         |
|                                                                                       |                                                           |                             |                                |                               |                       |                                |                             |                                                |                                             | 1.00                          | 5.4                           | 1.00<br>5.01                         | 5.4                           |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | DM                    |                                |                             |                                                |                                             | 1.4                           | 0.47                          | J.91<br>1 A                          | 0.47                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM10                  |                                |                             |                                                |                                             | 1.4                           | 0.47                          | 1.4                                  | 0.47                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM2.5                 |                                |                             |                                                |                                             | 1.4                           | 0.47                          | 1.4                                  | 0.47                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | SO2                   |                                |                             |                                                |                                             | 0.11                          | 0.1                           | 0.11                                 | 0.1                           |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO2                   |                                |                             |                                                |                                             | 0.11                          | 20109 24                      | 0                                    | 20109 24                      |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CH4                   |                                |                             |                                                |                                             |                               | 0.38                          | 0                                    | 0.38                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | N2O                   |                                |                             |                                                |                                             |                               | 0.04                          | 0                                    | 0.04                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO2 Equivalent        |                                |                             |                                                |                                             |                               | 20130                         | 0                                    | 20130                         |                                                                    |
| New/Modified                                                                          | No                                                        | H-201                       | H-201                          | Fired Process Heater<br>1     | VOC                   |                                |                             |                                                |                                             | 1.15                          | 5.05                          | 1.15                                 | 5.05                          | Heater                                                             |
|                                                                                       |                                                           |                             |                                |                               | NOx                   |                                |                             |                                                |                                             | 4.4                           | 12.87                         | 4.4                                  | 12.87                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO                    |                                |                             |                                                |                                             | 5.89                          | 21.51                         | 5.89                                 | 21.51                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM                    |                                |                             |                                                |                                             | 1.31                          | 2.36                          | 1.31                                 | 2.36                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM10                  |                                |                             |                                                |                                             | 1.31                          | 2.36                          | 1.31                                 | 2.36                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM2.5                 |                                |                             |                                                |                                             | 1.31                          | 2.36                          | 1.31                                 | 2.36                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | SO2                   |                                |                             |                                                |                                             | 0.17                          | 0.75                          | 0.17                                 | 0.75                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | NH3                   |                                |                             |                                                |                                             | 1.13                          | 4.94                          | 1.13                                 | 4.94                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | HAPs                  |                                |                             |                                                |                                             | 0.4                           | 1.76                          | 0.4                                  | 1.76                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO2                   |                                |                             |                                                |                                             |                               | 150121.62                     | 0                                    | 150121.62                     |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CH4                   |                                |                             |                                                |                                             |                               | 2.83                          | 0                                    | 2.83                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | N2O<br>CO2 Equivalent |                                |                             |                                                |                                             |                               | 0.28                          | 0                                    | 0.28<br>150276.66             |                                                                    |
| N / A d:G d                                                                           | NI-                                                       | 11.000                      | 11.004                         | Other and Outrearth a store d | 1/00                  |                                |                             |                                                |                                             | 4 74                          | 7.40                          | 4 74                                 | 7.40                          | Usedan                                                             |
| INEW/IVIODITIED                                                                       | NO                                                        | H-202                       | H-201                          | Steam Superneater 1           | NOX                   |                                |                             |                                                |                                             | 1.71                          | 1.48                          | 1.71                                 | 10.06                         | Heater                                                             |
|                                                                                       |                                                           |                             | _                              |                               |                       |                                |                             | -                                              |                                             | 0.01                          | 19.00                         | 0.01<br>9.72                         | 21.86                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | DM                    |                                |                             |                                                |                                             | 1.04                          | 31.00                         | 1.04                                 | 37.00                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM10                  |                                |                             |                                                |                                             | 1.94                          | 3.5                           | 1.94                                 | 3.5                           |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM2.5                 |                                |                             |                                                |                                             | 1.94                          | 3.5                           | 1.94                                 | 3.5                           |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | SO2                   |                                |                             |                                                |                                             | 0.26                          | 1.12                          | 0.26                                 | 1.12                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | NH3                   |                                |                             |                                                |                                             | 1.67                          | 7.31                          | 1.67                                 | 7.31                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | HAPs                  |                                |                             |                                                |                                             | 0.59                          | 2.6                           | 0.59                                 | 2.6                           |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO2                   |                                |                             |                                                |                                             |                               | 222364.44                     | 0                                    | 222364.44                     |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CH4                   |                                |                             |                                                |                                             |                               | 4.19                          | 0                                    | 4.19                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | N2O                   |                                |                             |                                                |                                             |                               | 0.42                          | 0                                    | 0.42                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO2 Equivalent        |                                |                             |                                                |                                             |                               | 222594.1                      | 0                                    | 222594.1                      |                                                                    |
| New/Modified                                                                          | Yes                                                       | H-201, H-202                | H-201                          | Train 1 Heaters Cap           | VOC                   |                                |                             |                                                |                                             | 2.86                          | 12.53                         | 2.86                                 | 12.53                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | NOx                   |                                |                             |                                                |                                             | 10.91                         | 31.93                         | 10.91                                | 31.93                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO                    |                                |                             |                                                |                                             | 14.61                         | 53.37                         | 14.61                                | 53.37                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM                    |                                |                             |                                                |                                             | 3.25                          | 5.86                          | 3.25                                 | 5.86                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM10                  |                                |                             |                                                |                                             | 3.25                          | 5.86                          | 3.25                                 | 5.86                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | PM2.5                 |                                |                             |                                                |                                             | 3.25                          | 5.86                          | 3.25                                 | 5.86                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | SO2                   |                                |                             |                                                |                                             | 0.43                          | 1.87                          | 0.43                                 | 1.87                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | NH3                   |                                |                             |                                                |                                             | 2.8                           | 12.25                         | 2.8                                  | 12.25                         |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | HAPs                  |                                |                             |                                                |                                             | 0.99                          | 4.36                          | 0.99                                 | 4.36                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | 002                   |                                |                             |                                                |                                             |                               | 372486.06                     | 0                                    | 372486.06                     |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | N2O                   |                                |                             |                                                |                                             |                               | 0.7                           | 0                                    | 7.02                          |                                                                    |
|                                                                                       |                                                           |                             |                                |                               | CO2 Equivalant        |                                |                             |                                                |                                             |                               | 372870 76                     | 0                                    | 372870 76                     |                                                                    |
|                                                                                       |                                                           |                             |                                |                               |                       |                                |                             |                                                |                                             |                               | 512010.10                     | ĭ                                    | 572070.70                     |                                                                    |

| Action Requested (only | Include these | Facility ID    | Emission Point | Source Name          | Pollutant      | Current Short- | Current Long- | Consolidated   | Consolidated  | Proposed Shor | t Proposed Long | Short-Term | Long-Term        | Unit Type (Used for reviewing BACT and |
|------------------------|---------------|----------------|----------------|----------------------|----------------|----------------|---------------|----------------|---------------|---------------|-----------------|------------|------------------|----------------------------------------|
| 1 action per FIN)      | emissions in  | Number (FIN)   | Number (FPN)   |                      |                | Term (lb/hr)   | Term (tnv)    | Current Short- | Current Long- | Term (lb/hr)  | Term (tnv)      | Difference | Difference (tov) | Monitoring Requirements)               |
|                        | annual (tov)  |                |                |                      |                |                | ((,))         | Term (lb/hr)   | Term (tov)    |               | (cp)            | (lb/hr)    |                  | inomioning requirements)               |
|                        | summary?      |                |                |                      |                |                |               |                | renn (tpy)    |               |                 | (19/11)    |                  |                                        |
|                        | Summary :     |                |                |                      |                |                |               |                |               |               |                 |            |                  |                                        |
| New/Modified           | No            | H-203          | H-203          | Fired Process Heater | VOC            |                |               |                |               | 1.15          | 5.05            | 1.15       | 5.05             | Heater                                 |
|                        |               |                |                | 2                    |                |                |               |                |               |               |                 |            |                  |                                        |
|                        |               |                |                |                      | NOx            |                |               |                |               | 4.4           | 12.87           | 4.4        | 12.87            |                                        |
|                        |               |                |                |                      | CO             |                |               |                |               | 5 89          | 21 51           | 5 89       | 21 51            |                                        |
|                        |               |                |                |                      | PM             |                |               |                |               | 1.31          | 2.36            | 1.31       | 2.36             |                                        |
|                        |               |                | -              |                      | PM10           |                |               |                |               | 1 31          | 2.36            | 1 31       | 2.36             |                                        |
|                        |               |                | -              |                      | PM2.5          |                |               |                |               | 1.01          | 2.00            | 1.31       | 2.36             |                                        |
|                        |               |                |                |                      | SO2            |                |               |                |               | 0.17          | 0.75            | 0.17       | 0.75             |                                        |
|                        |               |                |                |                      | NH3            |                |               |                |               | 1 13          | 4 94            | 1 13       | 1 01             |                                        |
| -                      |               |                |                |                      | HADe           |                |               |                |               | 0.4           | 1 76            | 0.4        | 1 76             |                                        |
|                        |               |                | -              |                      |                |                |               |                |               | 0.4           | 150121.62       | 0.4        | 1.70             |                                        |
|                        |               |                |                |                      |                |                |               |                |               |               | 100121.02       | 0          | 150121.02        |                                        |
|                        |               |                | _              | -                    |                |                |               |                |               |               | 2.83            | 0          | 2.03             |                                        |
|                        |               |                | _              | _                    |                |                |               |                |               |               | 0.28            | 0          | 0.28             |                                        |
|                        |               |                |                |                      | CO2 Equivalent |                |               |                |               |               | 150276.66       | 0          | 150276.66        |                                        |
|                        |               |                |                |                      |                |                |               |                |               |               |                 |            |                  |                                        |
| New/Modified           | No            | H-204          | H-203          | Steam Superheater 2  | VOC            |                |               |                |               | 1.71          | 7.48            | 1.71       | 7.48             | Heater                                 |
|                        |               |                |                |                      | NOx            |                |               |                |               | 6.51          | 19.06           | 6.51       | 19.06            |                                        |
|                        |               |                |                |                      | CO             |                |               |                |               | 8.72          | 31.86           | 8.72       | 31.86            |                                        |
|                        |               |                |                |                      | PM             |                |               |                |               | 1.94          | 3.5             | 1.94       | 3.5              |                                        |
|                        |               |                |                |                      | PM10           |                |               |                |               | 1.94          | 3.5             | 1.94       | 3.5              |                                        |
|                        |               |                |                |                      | PM2.5          |                |               |                |               | 1.94          | 3.5             | 1.94       | 3.5              |                                        |
|                        |               |                |                |                      | SO2            |                |               |                |               | 0.26          | 1.12            | 0.26       | 1.12             |                                        |
|                        |               |                |                |                      | NH3            |                |               |                |               | 1.67          | 7.31            | 1.67       | 7.31             |                                        |
|                        |               |                |                |                      | HAPs           |                |               |                |               | 0.59          | 2.6             | 0.59       | 2.6              |                                        |
|                        |               |                |                |                      | CO2            |                |               |                |               |               | 222364.44       | 0          | 222364.44        |                                        |
|                        |               |                |                |                      | CH4            |                |               |                |               |               | 4.19            | 0          | 4 19             |                                        |
|                        |               |                |                |                      | N2O            |                |               |                |               |               | 0.42            | 0          | 0.42             |                                        |
|                        |               |                |                |                      | CO2 Equivalent |                |               |                |               |               | 222594 1        | 0          | 222594 1         |                                        |
|                        |               |                |                |                      | COL Equivalent |                |               |                |               |               | 222001.1        | °          | 222004.1         |                                        |
| New/Modified           | Ves           | H-203 H-204    | H-203          | Train 2 Heaters Can  | VOC            |                |               |                |               | 2.86          | 12 53           | 2.86       | 12 53            |                                        |
|                        | 105           | 11 200, 11 204 | 11 200         |                      | NOv            |                |               |                |               | 10.01         | 31.03           | 10.01      | 21.02            |                                        |
|                        |               |                |                |                      | 0              |                |               |                |               | 14.61         | 52.27           | 14.61      | 52.27            |                                        |
|                        |               |                | -              |                      | DM             |                |               |                |               | 2.25          | 5.96            | 2.05       | 5.57             |                                        |
|                        |               |                | -              | _                    |                |                | 1             | -              |               | 2.25          | 5.00            | 3.20       | 5.00             |                                        |
|                        |               |                |                |                      | PINTU<br>DM2.5 |                |               |                |               | 3.20          | 5.00            | 3.20       | 5.00             |                                        |
|                        |               |                | _              | _                    | PM2.5          |                |               |                |               | 3.25          | 5.80            | 3.25       | 5.80             |                                        |
|                        | -             |                |                |                      | SU2            |                |               | -              |               | 0.43          | 1.87            | 0.43       | 1.87             |                                        |
|                        |               |                | _              |                      | NH3            |                |               |                |               | 2.8           | 12.25           | 2.8        | 12.25            |                                        |
|                        |               |                |                |                      | HAPs           |                |               |                |               | 0.99          | 4.36            | 0.99       | 4.36             |                                        |
|                        |               |                |                |                      | CO2            |                |               |                |               |               | 372486.06       | U          | 372486.06        |                                        |
|                        |               |                |                |                      | CH4            |                |               |                |               |               | 7.02            | 0          | 7.02             |                                        |
|                        |               |                |                |                      | N2O            |                |               |                |               |               | 0.7             | 0          | 0.7              |                                        |
|                        |               |                |                |                      | CO2 Equivalent |                |               |                |               |               | 372870.76       | 0          | 372870.76        |                                        |
|                        |               |                |                |                      |                |                |               |                |               |               |                 |            |                  |                                        |
| New/Modified           | Yes           | H-590          | H-590          | Startup Heater 1     | VOC            |                |               |                |               | 0.63          | 0.0025          | 0.63       | 0.0025           | Heater                                 |
|                        |               |                |                |                      | NOx            |                |               |                |               | 1.16          | 0.00464         | 1.16       | 0.0047           |                                        |
|                        |               |                |                |                      | CO             |                |               |                |               | 3.68          | 0.01            | 3.68       | 0.01             |                                        |
|                        |               |                |                |                      | PM             |                |               |                |               | 0.86          | 0.00346         | 0.86       | 0.0035           |                                        |
|                        |               |                |                |                      | PM10           |                |               |                |               | 0.86          | 0.00346         | 0.86       | 0.0035           |                                        |
|                        |               |                |                |                      | PM2.5          |                |               |                |               | 0.86          | 0.00346         | 0.86       | 0.0035           |                                        |
|                        |               |                |                |                      | SO2            |                |               |                |               | 0.07          | 0.00027         | 0.07       | 0.0003           |                                        |
|                        |               |                |                |                      | CO2            |                |               |                |               |               | 54.28           | 0          | 54.28            |                                        |
|                        |               |                |                |                      | CH4            |                |               |                |               |               | 0.00102         | 0          | 0.0011           |                                        |
|                        |               |                |                |                      | N2O            |                |               |                |               |               | 0.0001          | 0          | 0.0001           |                                        |
|                        |               |                |                |                      | CO2 Equivalent |                |               |                |               |               | 54 33           | 0          | 54.33            |                                        |
|                        |               |                |                |                      |                |                |               |                |               |               |                 | -          |                  |                                        |

| Action Requested (only<br>1 action per FIN) | Include these emissions in | Facility ID<br>Number (FIN) | Emission Point<br>Number (EPN) | Source Name                     | Pollutant      | Current Short-<br>Term (lb/hr) | Current Long-<br>Term (tpy) | Consolidated<br>Current Short- | Consolidated<br>Current Long- | Proposed Shor<br>Term (lb/hr) | Proposed Long-<br>Term (tpy) | Short-Term<br>Difference | Long-Term<br>Difference (tpy) | Unit Type (Used for reviewing BACT and<br>Monitoring Requirements) |
|---------------------------------------------|----------------------------|-----------------------------|--------------------------------|---------------------------------|----------------|--------------------------------|-----------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------|
|                                             | annual (tpy)<br>summary?   |                             |                                |                                 |                |                                |                             | Term (lb/hr)                   | Term (tpy)                    |                               |                              | (lb/hr)                  |                               |                                                                    |
| New/Modified                                | Yes                        | H-591                       | H-591                          | Startup Heater 2                | VOC            |                                |                             |                                |                               | 0.63                          | 0.0025                       | 0.63                     | 0.0025                        | Heater                                                             |
|                                             |                            |                             |                                |                                 | NOx            |                                |                             |                                |                               | 1.16                          | 0.00464                      | 1.16                     | 0.0047                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO             |                                |                             |                                |                               | 3.68                          | 0.01                         | 3.68                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM             |                                |                             |                                |                               | 0.86                          | 0.00346                      | 0.86                     | 0.0035                        |                                                                    |
|                                             |                            |                             |                                |                                 | PM10           |                                |                             |                                |                               | 0.86                          | 0.00346                      | 0.86                     | 0.0035                        |                                                                    |
|                                             |                            |                             |                                |                                 | PM2.5          |                                |                             |                                |                               | 0.86                          | 0.00346                      | 0.86                     | 0.0035                        |                                                                    |
|                                             |                            |                             |                                |                                 | SO2            |                                |                             |                                |                               | 0.07                          | 0.00027                      | 0.07                     | 0.0003                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2            |                                |                             |                                |                               |                               | 54.28                        | 0                        | 54.28                         |                                                                    |
|                                             |                            |                             |                                |                                 | CH4            |                                |                             |                                |                               |                               | 0.00102                      | 0                        | 0.0011                        |                                                                    |
|                                             |                            |                             |                                |                                 | N2O            |                                |                             |                                |                               |                               | 0.0001                       | 0                        | 0.0001                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2 Equivalent |                                |                             |                                |                               |                               | 54.33                        | 0                        | 54.33                         |                                                                    |
| New/Modified                                | Yes                        | FW-PUMP1                    | FW-PUMP1                       | Diesel Fire Water<br>Pump       | VOC            |                                |                             |                                |                               | 4.41                          | 0.22                         | 4.41                     | 0.22                          | Engine: Emergency, Diesel                                          |
|                                             |                            |                             |                                |                                 | NOx            |                                |                             |                                |                               | 4.41                          | 0.22                         | 4.41                     | 0.22                          |                                                                    |
|                                             |                            |                             |                                |                                 | CO             |                                |                             |                                |                               | 3.86                          | 0.19                         | 3.86                     | 0.19                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM             |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM10           |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM2.5          |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | SO2            |                                |                             |                                |                               | 0.00265                       | 0.00013                      | 0.0027                   | 0.0002                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2            |                                |                             |                                |                               |                               | 9.98                         | 0                        | 9.98                          |                                                                    |
|                                             |                            |                             |                                |                                 | CH4            |                                |                             |                                |                               |                               | 0.00019                      | 0                        | 0.0002                        |                                                                    |
|                                             |                            |                             |                                |                                 | N2O            |                                |                             |                                |                               |                               | 0.00002                      | 0                        | 0.0001                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2 Equivalent |                                |                             |                                |                               |                               | 9.99                         | 0                        | 9.99                          |                                                                    |
| New/Modified                                | Yes                        | FW-PUMP2                    | FW-PUMP2                       | Diesel Fire Water<br>Pump       | VOC            |                                |                             |                                |                               | 4.41                          | 0.22                         | 4.41                     | 0.22                          | Engine: Emergency, Diesel                                          |
|                                             |                            |                             |                                |                                 | NOx            |                                |                             |                                |                               | 4.41                          | 0.22                         | 4.41                     | 0.22                          |                                                                    |
|                                             |                            |                             |                                |                                 | CO             |                                |                             |                                |                               | 3.86                          | 0.19                         | 3.86                     | 0.19                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM             |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM10           |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM2.5          |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | SO2            |                                |                             |                                |                               | 0.00265                       | 0.00013                      | 0.0027                   | 0.0002                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2            |                                |                             |                                |                               |                               | 9.98                         | 0                        | 9.98                          |                                                                    |
|                                             |                            |                             |                                |                                 | CH4            |                                |                             |                                |                               |                               | 0.00019                      | 0                        | 0.0002                        |                                                                    |
|                                             |                            |                             |                                |                                 | N2O            |                                |                             |                                |                               |                               | 0.00002                      | 0                        | 0.0001                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2 Equivalent |                                |                             |                                |                               |                               | 9.99                         | 0                        | 9.99                          |                                                                    |
| New/Modified                                | Yes                        | FW-PUMP3                    | FW-PUMP3                       | Diesel Fire Water<br>Pump       | VOC            |                                |                             |                                |                               | 4.41                          | 0.22                         | 4.41                     | 0.22                          | Engine: Emergency, Diesel                                          |
|                                             |                            |                             |                                |                                 | NOx            |                                |                             |                                |                               | 4.41                          | 0.22                         | 4.41                     | 0.22                          |                                                                    |
|                                             |                            |                             |                                |                                 | CO             |                                |                             |                                |                               | 3.86                          | 0.19                         | 3.86                     | 0.19                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM             |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM10           |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM2.5          |                                |                             |                                |                               | 0.22                          | 0.01                         | 0.22                     | 0.01                          |                                                                    |
|                                             |                            |                             |                                |                                 | SO2            |                                |                             |                                |                               | 0.00265                       | 0.00013                      | 0.0027                   | 0.0002                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2            |                                |                             |                                |                               |                               | 9.98                         | 0                        | 9.98                          |                                                                    |
|                                             |                            |                             |                                |                                 | CH4            |                                |                             |                                |                               |                               | 0.00019                      | 0                        | 0.0002                        |                                                                    |
|                                             |                            |                             |                                |                                 | N2O            |                                |                             |                                |                               |                               | 0.00002                      | 0                        | 0.0001                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2 Equivalent |                                |                             |                                |                               |                               | 9.99                         | 0                        | 9.99                          |                                                                    |
| New/Modified                                | Yes                        | EG-1                        | EG-1                           | Diesel Emergency<br>Generator 1 | VOC            |                                |                             |                                |                               | 42.33                         | 2.12                         | 42.33                    | 2.12                          | Engine: Emergency, Diesel                                          |
|                                             |                            |                             |                                |                                 | NOx            |                                |                             |                                |                               | 42.33                         | 2.12                         | 42.33                    | 2.12                          |                                                                    |
|                                             |                            |                             |                                |                                 | CO             |                                |                             |                                |                               | 23.15                         | 1.16                         | 23.15                    | 1.16                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM             |                                |                             |                                |                               | 1.32                          | 0.07                         | 1.32                     | 0.07                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM10           |                                |                             |                                |                               | 1.32                          | 0.07                         | 1.32                     | 0.07                          |                                                                    |
|                                             |                            |                             |                                |                                 | PM2.5          |                                |                             |                                |                               | 1.32                          | 0.07                         | 1.32                     | 0.07                          |                                                                    |
|                                             |                            |                             |                                |                                 | SO2            |                                |                             |                                |                               | 0.02                          | 0.0008                       | 0.02                     | 0.0008                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2            |                                |                             |                                |                               |                               | 59.87                        | 0                        | 59.87                         |                                                                    |
|                                             |                            |                             |                                |                                 | CH4            |                                |                             |                                |                               |                               | 0.00113                      | 0                        | 0.0012                        |                                                                    |
|                                             |                            |                             |                                |                                 | CO2 Equivalent |                                |                             |                                |                               |                               | 50.03                        | 0                        | 50.02                         |                                                                    |
|                                             |                            |                             |                                |                                 |                |                                |                             |                                |                               |                               | 09.90                        | U                        | 39.93                         |                                                                    |

| Action Requested (only | Include these                            | Equility ID  | Emission Doint | Source Name                     | Dollutant             | Current Short | Current Long | Consolidated                   | ted Canaalidated Dranaaad Chart Dranaaad Lang Chart T |              | Short Torm      | l ong Torm            | Unit Type /Used for reviewing PACT and |                           |
|------------------------|------------------------------------------|--------------|----------------|---------------------------------|-----------------------|---------------|--------------|--------------------------------|-------------------------------------------------------|--------------|-----------------|-----------------------|----------------------------------------|---------------------------|
| 1 action per FIN)      | emissions in<br>annual (tpy)<br>summary? | Number (FIN) | Number (EPN)   |                                 | Poliutant             | Term (lb/hr)  | Term (tpy)   | Current Short-<br>Term (lb/hr) | Current Long-<br>Term (tpy)                           | Term (lb/hr) | Term (tpy)      | Difference<br>(lb/hr) | Difference (tpy)                       | Monitoring Requirements)  |
| New/Modified           | Yes                                      | EG-2         | EG-2           | Diesel Emergency<br>Generator 2 | VOC                   |               |              |                                |                                                       | 42.33        | 2.12            | 42.33                 | 2.12                                   | Engine: Emergency, Diesel |
|                        |                                          |              |                |                                 | NOx                   |               |              |                                |                                                       | 42 33        | 2 12            | 42.33                 | 2 12                                   |                           |
|                        |                                          |              |                |                                 | CO                    |               |              |                                |                                                       | 23.15        | 1.16            | 23.15                 | 1.16                                   |                           |
|                        |                                          |              |                |                                 | PM                    |               |              |                                |                                                       | 1.32         | 0.07            | 1.32                  | 0.07                                   |                           |
|                        |                                          |              |                |                                 | PM10                  |               |              |                                |                                                       | 1.32         | 0.07            | 1.32                  | 0.07                                   |                           |
|                        |                                          |              |                |                                 | PM2.5                 |               |              |                                |                                                       | 1.32         | 0.07            | 1.32                  | 0.07                                   |                           |
|                        |                                          |              |                |                                 | SO2                   |               |              |                                |                                                       | 0.02         | 0.0008          | 0.02                  | 0.0008                                 |                           |
|                        |                                          |              |                |                                 | CO2                   |               |              |                                |                                                       |              | 59.87           | 0                     | 59.87                                  |                           |
|                        |                                          |              |                |                                 | CH4                   |               |              |                                |                                                       |              | 0.00113         | 0                     | 0.0012                                 |                           |
|                        |                                          |              |                |                                 | N2O                   |               |              |                                |                                                       |              | 0.00011         | 0                     | 0.0002                                 |                           |
|                        |                                          |              |                |                                 | CO2 Equivalent        |               |              |                                |                                                       |              | 59.93           | 0                     | 59.93                                  |                           |
| New/Modified           | No                                       | FL-1         | FL-1           | Front End Flare 1 -<br>Pilot    | VOC                   |               |              |                                |                                                       | 0.01         | 0.04            | 0.01                  | 0.04                                   | Control: Flare            |
|                        |                                          |              |                |                                 | NOx                   |               |              |                                |                                                       | 0.1          | 0.43            | 0.1                   | 0.43                                   |                           |
|                        |                                          |              |                |                                 | CO                    |               |              |                                |                                                       | 0.85         | 3.71            | 0.85                  | 3.71                                   |                           |
|                        |                                          |              |                |                                 | SO2                   |               |              |                                |                                                       | 0.00091      | 0.00397         | 0.001                 | 0.004                                  |                           |
|                        |                                          |              |                |                                 | CO2                   |               |              |                                |                                                       |              | 885.72          | 0                     | 885.72                                 |                           |
|                        |                                          |              |                |                                 | CH4                   |               |              |                                |                                                       |              | 0.02            | 0                     | 0.02                                   |                           |
|                        |                                          |              |                |                                 | N2O                   |               |              |                                |                                                       |              | 0.00167         | 0                     | 0.0017                                 |                           |
|                        |                                          |              |                |                                 | CO2 Equivalent        |               |              |                                |                                                       |              | 886.63          | 0                     | 886.63                                 |                           |
| New/Modified           | No                                       | FL-1SUSD     | FL-1           | Front End Flare 1 -<br>SU/SD    | VOC                   |               |              |                                |                                                       | 190.19       | 0.97            | 190.19                | 0.97                                   | Control: Flare            |
|                        |                                          |              |                |                                 | NOx                   |               |              |                                |                                                       | 386.18       | 3.97            | 386.18                | 3.97                                   |                           |
|                        |                                          |              |                |                                 | CO                    |               |              |                                |                                                       | 3194.74      | 24.8            | 3194.74               | 24.8                                   |                           |
|                        |                                          |              |                |                                 | NH3                   |               |              |                                |                                                       | 238.77       | 0.96            | 238.77                | 0.96                                   |                           |
|                        |                                          |              |                |                                 | HAPs                  |               |              |                                |                                                       | 1.09         | 0.00432         | 1.09                  | 0.0044                                 |                           |
|                        |                                          |              |                |                                 | CO2                   |               |              |                                |                                                       |              | 7119.07         | 0                     | 7119.07                                |                           |
|                        |                                          |              |                |                                 | CH4                   |               |              |                                |                                                       |              | 0.27            | 0                     | 0.27                                   |                           |
|                        |                                          |              |                |                                 | N2O                   |               |              |                                |                                                       |              | 0.07            | 0                     | 0.07                                   |                           |
|                        |                                          |              |                |                                 | CO2 Equivalent        |               |              |                                |                                                       |              | 7147.9          | 0                     | 7147.9                                 |                           |
| New/Modified           | Yes                                      | FL-1         | FL-1           | Front End Flare 1               | VOC                   |               |              |                                |                                                       | 190.2        | 1.01            | 190.2                 | 1.01                                   |                           |
|                        |                                          |              |                |                                 | NOx                   |               |              |                                |                                                       | 386.28       | 4.4             | 386.28                | 4.4                                    |                           |
|                        |                                          |              |                |                                 | CO                    |               |              |                                |                                                       | 3195.59      | 28.51           | 3195.59               | 28.51                                  |                           |
|                        |                                          |              |                |                                 | SO2                   |               |              |                                |                                                       | 0.00091      | 0.00397         | 0.001                 | 0.004                                  |                           |
|                        |                                          |              |                |                                 | NH3                   |               |              |                                |                                                       | 238.77       | 0.96            | 238.77                | 0.96                                   |                           |
|                        |                                          |              |                |                                 | HAPs                  |               |              |                                |                                                       | 1.09         | 0.00432         | 1.09                  | 0.0044                                 |                           |
|                        |                                          |              |                |                                 | CO2                   |               |              |                                |                                                       |              | 8004.79         | 0                     | 8004.79                                |                           |
|                        |                                          |              |                |                                 | CH4                   |               |              |                                |                                                       |              | 0.29            | 0                     | 0.29                                   |                           |
|                        |                                          |              |                |                                 | N2O<br>CO2 Equivalent |               |              |                                |                                                       |              | 0.07<br>8034.53 | 0<br>0                | 0.07<br>8034.53                        |                           |
| New/Modified           | No                                       | FL-2         | FL-2           | Back End Flare 1 -              | VOC                   |               |              |                                |                                                       | 0.01         | 0.04            | 0.01                  | 0.04                                   | Control: Flare            |
|                        |                                          |              |                |                                 | NOx                   |               |              |                                |                                                       | 0.1          | 0.43            | 0.1                   | 0.43                                   |                           |
|                        |                                          |              |                |                                 | CO                    |               |              |                                |                                                       | 0.85         | 3 71            | 0.85                  | 3 71                                   |                           |
|                        |                                          |              |                |                                 | S02                   |               |              |                                |                                                       | 0.00091      | 0.00397         | 0.001                 | 0.004                                  |                           |
|                        |                                          |              |                |                                 | CO2                   |               |              |                                |                                                       | 0.00001      | 885.72          | 0                     | 885 72                                 |                           |
|                        |                                          |              |                |                                 | CH4                   |               |              |                                |                                                       |              | 0.02            | 0                     | 0.02                                   |                           |
|                        |                                          |              |                |                                 | N2O                   |               |              |                                |                                                       |              | 0.00167         | 0                     | 0.0017                                 |                           |
|                        |                                          |              |                |                                 | CO2 Equivalent        |               |              |                                |                                                       |              | 886.63          | 0                     | 886.63                                 |                           |
| New/Modified           | No                                       | FL-2SUSD     | FL-2           | Back End Flare 1 -<br>SU/SD     | VOC                   |               |              |                                |                                                       | 3.53         | 0.01            | 3.53                  | 0.01                                   | Control: Flare            |
|                        |                                          |              |                |                                 | NOx                   |               |              |                                |                                                       | 21.68        | 0.09            | 21.68                 | 0.09                                   |                           |
|                        |                                          |              |                |                                 | CO                    |               |              |                                |                                                       | 36.87        | 0.15            | 36.87                 | 0.15                                   |                           |
|                        |                                          |              |                |                                 | NH3                   |               |              |                                |                                                       | 19.98        | 0.09            | 19.98                 | 0.09                                   |                           |
|                        |                                          |              |                |                                 | CO2                   |               |              |                                |                                                       |              | 32.31           | 0                     | 32.31                                  |                           |
|                        |                                          |              |                |                                 | CH4                   |               |              |                                |                                                       |              | 0.00164         | 0                     | 0.0017                                 |                           |
|                        |                                          |              |                |                                 | N2O                   |               |              |                                |                                                       |              | 0.00033         | 0                     | 0.0004                                 |                           |
|                        |                                          |              |                |                                 | CO2 Equivalent        |               |              |                                |                                                       |              | 32.4            | 0                     | 32.4                                   |                           |

| Action Requested (only Include these Facili |                                          | Facility ID  | Emission Point | Source Name                  | Pollutant      | Current Short- | Current Long- | Consolidated                   | Consolidated                | Proposed Short | Proposed Long | Short-Term            | Long-Term        | Unit Type (Used for reviewing BACT and |
|---------------------------------------------|------------------------------------------|--------------|----------------|------------------------------|----------------|----------------|---------------|--------------------------------|-----------------------------|----------------|---------------|-----------------------|------------------|----------------------------------------|
| 1 action per FIN)                           | emissions in<br>annual (tpy)<br>summary? | Number (FIN) | Number (EPN)   |                              | l'onutant      | Term (lb/hr)   | Term (tpy)    | Current Short-<br>Term (lb/hr) | Current Long-<br>Term (tpy) | Term (lb/hr)   | Term (tpy)    | Difference<br>(lb/hr) | Difference (tpy) | Monitoring Requirements)               |
| Now/Modified                                | Vee                                      | EL 2         |                | Rook End Floro 1             | VOC            |                |               |                                |                             | 2 54           | 0.05          | 2 54                  | 0.05             |                                        |
| New/Wodilied                                | res                                      | FL-2         | FL-Z           | Back End Flare I             | NOX            |                |               |                                |                             | 3.34           | 0.05          | 3.04                  | 0.05             |                                        |
|                                             |                                          |              |                |                              |                |                |               |                                |                             | 21.70          | 0.02          | 21.70                 | 0.02             |                                        |
|                                             |                                          |              |                |                              | 00             |                |               |                                |                             | 0.00001        | 3.00          | 37.72                 | 3.00             |                                        |
|                                             |                                          |              |                |                              | 502<br>NU2     |                |               |                                |                             | 0.00091        | 0.00397       | 0.001                 | 0.004            |                                        |
|                                             |                                          |              |                |                              | NH3            |                |               |                                |                             | 19.98          | 0.09          | 19.98                 | 0.09             |                                        |
|                                             |                                          |              |                |                              | C02            |                |               |                                |                             | -              | 918.03        | 0                     | 918.03           |                                        |
|                                             |                                          |              |                |                              | CH4            |                |               |                                |                             | -              | 0.02          | 0                     | 0.02             |                                        |
|                                             |                                          |              |                |                              | N2O            |                |               |                                |                             |                | 0.002         | 0                     | 0.002            |                                        |
|                                             |                                          |              |                |                              | CO2 Equivalent |                |               |                                |                             |                | 919.03        | 0                     | 919.03           |                                        |
| New/Modified                                | No                                       | FL-3         | FL-3           | Storage Flare - Pilot        | VOC            |                |               |                                |                             | 0.01           | 0.03          | 0.01                  | 0.03             | Control: Flare                         |
|                                             |                                          |              |                |                              | NOx            |                |               |                                |                             | 0.07           | 0.32          | 0.07                  | 0.32             |                                        |
|                                             |                                          |              |                |                              | CO             |                |               |                                |                             | 0.64           | 2.78          | 0.64                  | 2.78             |                                        |
|                                             |                                          |              |                |                              | SO2            |                |               |                                |                             | 0.00068        | 0.00298       | 0.0007                | 0.003            |                                        |
|                                             |                                          |              |                |                              | CO2            |                |               |                                |                             |                | 664.29        | 0                     | 664.29           |                                        |
|                                             |                                          |              |                |                              | CH4            |                |               |                                |                             |                | 0.01          | 0                     | 0.01             |                                        |
|                                             |                                          |              |                |                              | N2O            |                |               |                                |                             |                | 0.00125       | 0                     | 0.0013           |                                        |
|                                             |                                          |              |                |                              | CO2 Equivalent |                |               |                                |                             |                | 664.97        | 0                     | 664.97           |                                        |
| New/Modified                                | No                                       | FL-3SUSD     | FL-3           | Storage Flare - SU/SD        | NOx            |                |               |                                |                             | 53.55          | 9.48          | 53.55                 | 9.48             | Control: Flare                         |
|                                             |                                          |              |                |                              | NH3            |                |               |                                |                             | 97             | 17.17         | 97                    | 17.17            |                                        |
| New/Modified                                | Yes                                      | FL-3         | FL-3           | Storage Flare                | VOC            |                |               |                                |                             | 0.01           | 0.03          | 0.01                  | 0.03             |                                        |
|                                             |                                          |              |                |                              | NOx            |                |               |                                |                             | 53 62          | 9.8           | 53 62                 | 9.8              |                                        |
|                                             |                                          |              |                |                              | 0              |                |               |                                |                             | 0.64           | 2 78          | 0.64                  | 2.78             |                                        |
|                                             |                                          |              |                |                              | SO2            |                |               |                                |                             | 0.00           | 0.00298       | 0.007                 | 0.003            |                                        |
|                                             |                                          |              |                |                              | NH3            |                |               |                                |                             | 97             | 17 17         | 07                    | 17 17            |                                        |
|                                             |                                          |              |                |                              | CO2            |                |               |                                |                             | 51             | 664.20        | 0                     | 664 20           |                                        |
|                                             |                                          |              | -              |                              |                |                |               |                                |                             |                | 004.29        | 0                     | 0.04.29          |                                        |
|                                             |                                          |              |                |                              |                |                |               |                                |                             |                | 0.01          | 0                     | 0.01             |                                        |
|                                             |                                          |              |                |                              | CO2 Equivalant |                |               |                                |                             |                | 664.07        | 0                     | 0.0013           |                                        |
|                                             |                                          |              |                |                              | CO2 Equivalent |                |               |                                |                             |                | 004.97        | 0                     | 004.97           |                                        |
| New/Modified                                | No                                       | FL-4         | FL-4           | Front End Flare 2 -<br>Pilot | VOC            |                |               |                                |                             | 0.01           | 0.04          | 0.01                  | 0.04             | Control: Flare                         |
|                                             |                                          |              |                |                              | NOx            |                |               |                                |                             | 0.1            | 0.43          | 0.1                   | 0.43             |                                        |
|                                             |                                          |              |                |                              | CO             |                |               |                                |                             | 0.85           | 3.71          | 0.85                  | 3.71             |                                        |
|                                             |                                          |              |                |                              | SO2            |                |               |                                |                             | 0.00091        | 0.00397       | 0.001                 | 0.004            |                                        |
|                                             |                                          |              |                |                              | CO2            |                |               |                                |                             |                | 885.72        | 0                     | 885.72           |                                        |
|                                             |                                          |              |                |                              | CH4            |                |               |                                |                             |                | 0.02          | 0                     | 0.02             |                                        |
|                                             |                                          |              |                |                              | N2O            |                |               |                                |                             |                | 0.00167       | 0                     | 0.0017           |                                        |
|                                             |                                          |              |                |                              | CO2 Equivalent |                |               |                                |                             |                | 886.63        | 0                     | 886.63           |                                        |
| New/Modified                                | No                                       | FL-4SUSD     | FL-4           | Front End Flare 2 -<br>SU/SD | VOC            |                |               |                                |                             | 190.19         | 0.97          | 190.19                | 0.97             | Control: Flare                         |
|                                             |                                          |              |                |                              | NOx            |                |               |                                |                             | 386.18         | 3.97          | 386.18                | 3.97             |                                        |
|                                             |                                          |              |                |                              | CO             |                |               |                                |                             | 3194.74        | 24.8          | 3194.74               | 24.8             |                                        |
|                                             |                                          |              |                |                              | NH3            |                |               |                                |                             | 238.77         | 0.96          | 238.77                | 0.96             |                                        |
|                                             |                                          |              |                |                              | HAPs           |                |               |                                |                             | 1.09           | 0.00432       | 1.09                  | 0.0044           |                                        |
|                                             |                                          |              |                |                              | CO2            |                |               |                                |                             |                | 7119.07       | 0                     | 7119.07          |                                        |
|                                             |                                          |              |                |                              | CH4            |                |               |                                |                             |                | 0.27          | 0                     | 0.27             |                                        |
|                                             |                                          |              |                |                              | N2O            |                |               |                                |                             |                | 0.07          | 0                     | 0.07             |                                        |
|                                             |                                          |              |                |                              | CO2 Equivalent |                |               |                                |                             |                | 7147.9        | 0                     | 7147.9           |                                        |
| New/Modified                                | Yes                                      | FL-4         | FL-4           | Front End Flare 2            | VOC            |                |               |                                |                             | 190.2          | 1.01          | 190.2                 | 1.01             |                                        |
|                                             |                                          |              |                |                              | NOx            |                |               |                                |                             | 386.28         | 4.4           | 386.28                | 4.4              |                                        |
|                                             |                                          |              |                |                              | CO             |                |               |                                |                             | 3195.59        | 28.51         | 3195.59               | 28.51            |                                        |
|                                             |                                          |              |                |                              | SO2            |                |               |                                |                             | 0.00091        | 0.00397       | 0.001                 | 0.004            |                                        |
|                                             |                                          |              |                |                              | NH3            |                |               |                                |                             | 238.77         | 0.96          | 238.77                | 0.96             |                                        |
|                                             |                                          |              |                |                              | HAPs           |                |               |                                |                             | 1.09           | 0.00432       | 1.09                  | 0.0044           |                                        |
|                                             |                                          |              |                |                              | CO2            |                |               |                                |                             |                | 8004.79       | 0                     | 8004.79          |                                        |
|                                             |                                          |              |                |                              | CH4            |                |               |                                |                             |                | 0.29          | 0                     | 0.29             |                                        |
|                                             |                                          |              |                |                              | N2O            |                |               |                                |                             |                | 0.07          | 0                     | 0.07             |                                        |
|                                             |                                          |              |                |                              | CO2 Equivalent |                |               |                                |                             |                | 8034.53       | 0                     | 8034.53          |                                        |

| Action Requested (only<br>1 action per FIN) | y Include these<br>emissions in<br>annual (tpy)<br>summary? | Facility ID<br>Number (FIN) | Emission Point<br>Number (EPN) | Source Name                   | Pollutant      | Current Short-<br>Term (lb/hr) | Current Long-<br>Term (tpy) | Consolidated<br>Current Short-<br>Term (Ib/hr) | Consolidated<br>Current Long-<br>Term (tpy) | Proposed Sho<br>Term (Ib/hr) | rt Proposed Long<br>Term (tpy) | -Short-Term<br>Difference<br>(Ib/hr) | Long-Term<br>Difference (tpy) | Unit Type (Used for reviewing BACT and<br>Monitoring Requirements)         |
|---------------------------------------------|-------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------|----------------|--------------------------------|-----------------------------|------------------------------------------------|---------------------------------------------|------------------------------|--------------------------------|--------------------------------------|-------------------------------|----------------------------------------------------------------------------|
| New/Modified                                | No                                                          | FL-5                        | FL-5                           | Back End Flare 2 -<br>Pilot   | VOC            |                                |                             |                                                |                                             | 0.01                         | 0.04                           | 0.01                                 | 0.04                          | Control: Flare                                                             |
|                                             |                                                             |                             |                                |                               | NOx            |                                |                             |                                                |                                             | 0.1                          | 0.43                           | 0.1                                  | 0.43                          |                                                                            |
|                                             |                                                             |                             |                                |                               | СО             |                                |                             |                                                |                                             | 0.85                         | 3.71                           | 0.85                                 | 3.71                          |                                                                            |
|                                             |                                                             |                             |                                |                               | SO2            |                                |                             |                                                |                                             | 0.00091                      | 0.00397                        | 0.001                                | 0.004                         |                                                                            |
|                                             |                                                             |                             |                                |                               | CO2            |                                |                             |                                                |                                             |                              | 885.72                         | 0                                    | 885.72                        |                                                                            |
|                                             |                                                             |                             |                                |                               | CH4            |                                |                             |                                                |                                             |                              | 0.02                           | 0                                    | 0.02                          |                                                                            |
|                                             |                                                             |                             |                                |                               | N2O            |                                |                             |                                                |                                             |                              | 0.00167                        | 0                                    | 0.0017                        |                                                                            |
|                                             |                                                             |                             |                                |                               | CO2 Equivalent |                                |                             |                                                |                                             |                              | 886.63                         | 0                                    | 886.63                        |                                                                            |
| New/Modified                                | No                                                          | FL-5SUSD                    | FL-5                           | Back End Flare 2 -<br>SU/SD   | VOC            |                                |                             |                                                |                                             | 3.53                         | 0.01                           | 3.53                                 | 0.01                          | Control: Flare                                                             |
|                                             |                                                             |                             |                                |                               | NOx            |                                |                             |                                                |                                             | 21.68                        | 0.09                           | 21.68                                | 0.09                          |                                                                            |
|                                             |                                                             |                             |                                |                               | CO             |                                |                             |                                                |                                             | 36.87                        | 0.15                           | 36.87                                | 0.15                          |                                                                            |
|                                             |                                                             |                             |                                |                               | NH3            |                                |                             |                                                |                                             | 19.98                        | 0.09                           | 19.98                                | 0.09                          |                                                                            |
|                                             |                                                             |                             |                                |                               | CO2            |                                |                             |                                                |                                             |                              | 32.31                          | 0                                    | 32.31                         |                                                                            |
|                                             |                                                             |                             |                                |                               | CH4            |                                |                             |                                                |                                             |                              | 0.00164                        | 0                                    | 0.0017                        |                                                                            |
|                                             |                                                             |                             |                                |                               | N2O            |                                |                             |                                                |                                             |                              | 0.00033                        | 0                                    | 0.0004                        |                                                                            |
|                                             |                                                             |                             |                                |                               | CO2 Equivalent |                                |                             |                                                |                                             |                              | 32.4                           | 0                                    | 32.4                          |                                                                            |
| New/Modified                                | Yes                                                         | FL-5                        | FL-5                           | Back End Flare 2              | VOC            |                                |                             |                                                |                                             | 3.54                         | 0.05                           | 3.54                                 | 0.05                          |                                                                            |
|                                             |                                                             |                             |                                |                               | NOx            |                                |                             |                                                |                                             | 21.78                        | 0.52                           | 21.78                                | 0.52                          |                                                                            |
|                                             |                                                             |                             |                                |                               | CO             |                                |                             |                                                |                                             | 37.72                        | 3.86                           | 37.72                                | 3.86                          |                                                                            |
|                                             |                                                             |                             |                                |                               | SO2            |                                |                             |                                                |                                             | 0.00091                      | 0.00397                        | 0.001                                | 0.004                         |                                                                            |
|                                             |                                                             |                             |                                |                               | NH3            |                                |                             |                                                |                                             | 19.98                        | 0.09                           | 19.98                                | 0.09                          |                                                                            |
|                                             |                                                             |                             |                                |                               | CO2            |                                |                             |                                                |                                             |                              | 918.03                         | 0                                    | 918.03                        |                                                                            |
|                                             |                                                             |                             |                                |                               | CH4            |                                |                             |                                                |                                             |                              | 0.02                           | 0                                    | 0.02                          |                                                                            |
|                                             |                                                             |                             |                                |                               | N2O            |                                |                             |                                                |                                             |                              | 0.002                          | 0                                    | 0.002                         |                                                                            |
|                                             |                                                             |                             |                                |                               | CO2 Equivalent |                                |                             |                                                |                                             |                              | 919.03                         | 0                                    | 919.03                        |                                                                            |
| New/Modified                                | Yes                                                         | TK-1                        | TK-1                           | Diesel Storage Tank           | VOC            |                                |                             |                                                |                                             | 0.34                         | 0.00153                        | 0.34                                 | 0.0016                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | TK-2                        | ТК-2                           | Diesel Storage Tank           | VOC            |                                |                             |                                                |                                             | 0.34                         | 0.00153                        | 0.34                                 | 0.0016                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | TK-3A                       | ТК-ЗА                          | MDEA Storage Tank 1           | VOC            |                                |                             |                                                |                                             | 0.78                         | 0.00247                        | 0.78                                 | 0.0025                        | Storage Tank (1): Fixed roof with capacity < 25.000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | ТК-3В                       | ТК-ЗВ                          | MDEA Storage Tank 2           | VOC            |                                |                             |                                                |                                             | 0.78                         | 0.00247                        | 0.78                                 | 0.0025                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | TK-4A                       | TK-4A                          | MDEA Solution Prep<br>Tank 1  | VOC            |                                |                             |                                                |                                             | 0.05                         | 0.00108                        | 0.05                                 | 0.0011                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | TK-4B                       | TK-4B                          | MDEA Solution Prep<br>Tank 2  | VOC            |                                |                             |                                                |                                             | 0.05                         | 0.00108                        | 0.05                                 | 0.0011                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | TK-5A                       | TK-5A                          | MDEA Solution Drain<br>Tank 1 | VOC            |                                |                             |                                                |                                             | 0.02                         | 0.0002                         | 0.02                                 | 0.0002                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | TK-5B                       | TK-5B                          | MDEA Solution Drain<br>Tank 2 | VOC            |                                |                             |                                                |                                             | 0.02                         | 0.0002                         | 0.02                                 | 0.0002                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
| New/Modified                                | Yes                                                         | TK-WW1                      | TK-WW1                         | WW Equalization Tank          | VOC            |                                |                             |                                                |                                             | 0.0007                       | 0.00026                        | 0.0007                               | 0.0003                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
|                                             |                                                             |                             |                                |                               | NH3            |                                |                             |                                                |                                             | 0.01                         | 0.00477                        | 0.01                                 | 0.0048                        |                                                                            |
| New/Modified                                | Yes                                                         | TK-WW2                      | TK-WW2                         | WW Neutralization<br>Tank     | VOC            |                                |                             |                                                |                                             | 0.0007                       | 0.0002                         | 0.0007                               | 0.0002                        | Storage Tank (1): Fixed roof with capacity < 25,000 gal or TVP < 0.50 psia |
|                                             |                                                             |                             |                                |                               | NH3            |                                |                             |                                                |                                             | 0.01                         | 0.00358                        | 0.01                                 | 0.0036                        |                                                                            |
| New/Modified                                | Yes                                                         | TK-WW3                      | TK-WW3                         | Off-Spec Wastewater           | VOC            |                                |                             |                                                |                                             | 0.01                         | 0.00003                        | 0.01                                 | 0.0001                        | Storage Tank (1): Fixed roof with capacity <                               |
|                                             |                                                             |                             |                                |                               | NH3            |                                |                             |                                                |                                             | 0.23                         | 0.00053                        | 0.23                                 | 0.0006                        |                                                                            |
| New/Modified                                | Yes                                                         | TK-SW1                      | TK-SW1                         | Contact Storm Water           | VOC            |                                |                             |                                                |                                             | 0.01                         | 0.00001                        | 0.01                                 | 0.0001                        | Storage Tank (1): Fixed roof with capacity <                               |
|                                             |                                                             |                             |                                | Tank                          |                |                                |                             |                                                |                                             | 0.11                         | 0.00000                        | 0.11                                 | 0.0001                        | 25,000 gal or TVP < 0.50 psia                                              |
|                                             |                                                             |                             |                                |                               |                |                                |                             |                                                |                                             | 0.11                         | 0.00009                        | 0.11                                 | 0.0001                        |                                                                            |

| Action Requested (only<br>1 action per FIN) | Include these<br>emissions in<br>annual (tpy)<br>summary? | Facility ID<br>Number (FIN) | Emission Point<br>Number (EPN) | Source Name                           | Pollutant      | Current Short-<br>Term (Ib/hr) | Current Long-<br>Term (tpy) | Consolidated<br>Current Short-<br>Term (Ib/hr) | Consolidated<br>Current Long-<br>Term (tpy) | Proposed Sho<br>Term (Ib/hr) | rt⊦Proposed Long<br>Term (tpy) | Short-Term<br>Difference<br>(Ib/hr) | Long-Term<br>Difference (tpy) | Unit Type (Used for reviewing BACT and<br>Monitoring Requirements) |
|---------------------------------------------|-----------------------------------------------------------|-----------------------------|--------------------------------|---------------------------------------|----------------|--------------------------------|-----------------------------|------------------------------------------------|---------------------------------------------|------------------------------|--------------------------------|-------------------------------------|-------------------------------|--------------------------------------------------------------------|
| New/Modified                                | Yes                                                       | VTCO2-1                     | VTCO2-1                        | Low Flow CO2 Vent 1                   | со             |                                |                             |                                                |                                             | 0.03                         | 0.12                           | 0.03                                | 0.12                          | Process Vent                                                       |
|                                             |                                                           |                             |                                |                                       | CO2            |                                |                             |                                                |                                             |                              | 13003.35                       | 0                                   | 13003.35                      |                                                                    |
|                                             |                                                           |                             |                                |                                       | CH4            |                                |                             |                                                |                                             |                              | 0.19                           | 0                                   | 0.19                          |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2 Equivalent |                                |                             |                                                |                                             |                              | 13007.98                       | 0                                   | 13007.98                      |                                                                    |
| New/Modified                                | Yes                                                       | VTCO2-2P                    | VTCO2-2                        | High Flow CO2 Vent 1<br>(Provisional) | СО             |                                |                             |                                                |                                             | 5.68                         | 12.27                          | 5.68                                | 12.27                         | Process Vent                                                       |
|                                             |                                                           |                             |                                |                                       | CO2            |                                |                             |                                                |                                             |                              | 1282029.03                     | 0                                   | 1282029.03                    |                                                                    |
|                                             |                                                           |                             |                                |                                       | CH4            |                                |                             |                                                |                                             |                              | 18.27                          | 0                                   | 18.27                         |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2 Equivalent |                                |                             |                                                |                                             |                              | 1282485.81                     | 0                                   | 1282485.81                    |                                                                    |
| New/Modified                                | No                                                        | VTCO2-2                     | VTCO2-2                        | High Flow CO2 Vent 1                  | со             |                                |                             |                                                |                                             | 5.68                         | 6.16                           | 5.68                                | 6.16                          | Process Vent                                                       |
|                                             |                                                           |                             |                                |                                       | CO2            |                                |                             |                                                |                                             |                              | 643388.64                      | 0                                   | 643388.64                     |                                                                    |
|                                             |                                                           |                             |                                |                                       | CH4            |                                |                             |                                                |                                             |                              | 9.17                           | 0                                   | 9.17                          |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2 Equivalent |                                |                             |                                                |                                             |                              | 643617.88                      | 0                                   | 643617.88                     |                                                                    |
| New/Modified                                | Yes                                                       | VTCO2-3                     | VTCO2-3                        | Low Flow CO2 Vent 2                   | со             |                                |                             |                                                |                                             | 0.03                         | 0.12                           | 0.03                                | 0.12                          | Process Vent                                                       |
|                                             |                                                           |                             |                                |                                       | CO2            |                                |                             |                                                |                                             |                              | 13003.35                       | 0                                   | 13003.35                      |                                                                    |
|                                             |                                                           |                             |                                |                                       | CH4            |                                |                             |                                                |                                             |                              | 0.19                           | 0                                   | 0.19                          |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2 Equivalent |                                |                             |                                                |                                             |                              | 13007.98                       | 0                                   | 13007.98                      |                                                                    |
| New/Modified                                | Yes                                                       | VTCO2-4P                    | VTCO2-4                        | High Flow CO2 Vent 2<br>(Provisional) | со             |                                |                             |                                                |                                             | 5.68                         | 12.27                          | 5.68                                | 12.27                         | Process Vent                                                       |
|                                             |                                                           |                             |                                |                                       | CO2            |                                |                             |                                                |                                             |                              | 1282029.03                     | 0                                   | 1282029.03                    |                                                                    |
|                                             |                                                           |                             |                                |                                       | CH4            |                                |                             |                                                |                                             |                              | 18.27                          | 0                                   | 18.27                         |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2 Equivalent |                                |                             |                                                |                                             |                              | 1282485.81                     | 0                                   | 1282485.81                    |                                                                    |
| New/Modified                                | No                                                        | VTCO2-4                     | VTCO2-4                        | High Flow CO2 Vent 2                  | со             |                                |                             |                                                |                                             | 5.68                         | 6.16                           | 5.68                                | 6.16                          | Process Vent                                                       |
|                                             |                                                           |                             |                                |                                       | CO2            |                                |                             |                                                |                                             |                              | 643388.64                      | 0                                   | 643388.64                     |                                                                    |
|                                             |                                                           |                             |                                |                                       | CH4            |                                |                             |                                                |                                             |                              | 9.17                           | 0                                   | 9.17                          |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2 Equivalent |                                |                             |                                                |                                             |                              | 643617.88                      | 0                                   | 643617.88                     |                                                                    |
| New/Modified                                | Yes                                                       | FUG                         | FUG                            | Equipment Leak<br>Fugitives           | VOC            |                                |                             |                                                |                                             | 0.08                         | 0.34                           | 0.08                                | 0.34                          | Fugitives: Piping and Equipment Leak                               |
|                                             |                                                           |                             |                                |                                       | CO             |                                |                             |                                                |                                             | 2.2                          | 9.62                           | 2.2                                 | 9.62                          |                                                                    |
|                                             |                                                           |                             |                                |                                       | NH3            |                                |                             |                                                |                                             | 1.22                         | 5.33                           | 1.22                                | 5.33                          |                                                                    |
|                                             |                                                           |                             |                                |                                       | H2S            |                                |                             |                                                |                                             | 0.2                          | 0.87                           | 0.2                                 | 0.87                          |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2            |                                |                             |                                                |                                             |                              | 13.26                          | 0                                   | 13.26                         |                                                                    |
|                                             |                                                           |                             |                                |                                       | CH4            |                                |                             |                                                |                                             |                              | 16.56                          | 0                                   | 16.56                         |                                                                    |
|                                             |                                                           |                             |                                |                                       | CO2 Equivalent |                                |                             |                                                |                                             |                              | 427.28                         | 0                                   | 427.28                        |                                                                    |

#### Texas Commission on Environmental Quality Form PI-1 General Application Stack Parameters

| Emission Point Discharge Parameters |             |                 |          |          |             |             |            |          |             |             |             |             |
|-------------------------------------|-------------|-----------------|----------|----------|-------------|-------------|------------|----------|-------------|-------------|-------------|-------------|
| EPN                                 | Included in | UTM Coordinates | East     | North    | Building    | Height      | Stack Exit | Velocity | Temperature | Fugitives - | Fugitives - | Fugitives - |
|                                     | EMEW?       | Zone            | (meters) | (meters) | Height (ft) | Above       | Diameter   | (FPS)    | (°F)        | Length (ft) | Width (ft)  | Axis        |
|                                     |             |                 |          |          |             | Ground (ft) | (ft)       |          |             |             |             | Degrees     |
| CTWR1                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| CTWR2                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| BLR-AUX1                            | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| H-201                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| H-203                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| H-590                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| H-591                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FW-PUMP1                            | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FW-PUMP2                            | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FW-PUMP3                            | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| EG-1                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| EG-2                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FL-1                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FL-2                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FL-3                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FL-4                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FL-5                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-1                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-2                                | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-3A                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| ТК-3В                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-4A                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-4B                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-5A                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-5B                               | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-WW1                              | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-WW2                              | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-WW3                              | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| TK-SW1                              | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| VTCO2-1                             | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| VTCO2-2                             | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| VTCO2-3                             | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| VTCO2-4                             | Yes         |                 |          |          |             |             |            |          |             |             |             |             |
| FUG                                 | Yes         |                 |          |          |             |             |            |          |             |             |             |             |

| I. Public Notice Applicability                                                                                 |     |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| A. Application Type                                                                                            |     |  |  |  |
| Is this an application for an initial permit?                                                                  | Yes |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
| Is this an application for a new or major modification of a PSD (including GHG), Nonattainment, or HAP permit? | Yes |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
| B. Project Increases and Public Notice Thresholds (for Initial and Amendment Projects)                         |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |
|                                                                                                                |     |  |  |  |

#### Texas Commission on Environmental Quality Form PI-1 General Application

Public Notice

on Permit #: To be assigned Company: Ingleside Clean Ammonia Partners, LLC

| Pollutant                |                  |                     | Proposed Long-        |               |  |
|--------------------------|------------------|---------------------|-----------------------|---------------|--|
|                          |                  |                     | Term (tpy)            |               |  |
| VOC                      |                  |                     | 33.22                 |               |  |
| PM                       |                  |                     | 183.71                |               |  |
| PM <sub>10</sub>         |                  |                     | 13.09                 |               |  |
| PM <sub>2.5</sub>        |                  |                     | 12.37                 |               |  |
| NO <sub>x</sub>          |                  |                     | 90.13                 |               |  |
| СО                       |                  |                     | 216.97                |               |  |
| SO <sub>2</sub>          |                  |                     | 3.86                  |               |  |
| Pb                       |                  |                     | 0.00                  |               |  |
| NH3                      |                  |                     | 66.26897              |               |  |
| CO2                      |                  |                     | 3373927.55            |               |  |
| CH4                      |                  |                     | 68.53487              |               |  |
| N2O                      |                  |                     | 1.58573               |               |  |
| CO2 Equivalent           |                  |                     | 3376116.96            |               |  |
| HAPs                     |                  |                     | 8.72864               |               |  |
| H2S                      |                  |                     | 0.87                  |               |  |
|                          |                  |                     |                       |               |  |
|                          |                  |                     |                       |               |  |
|                          |                  |                     |                       |               |  |
|                          |                  |                     |                       |               |  |
|                          |                  |                     |                       |               |  |
| * Notice is required for | PM, PM10, and PM | 2.5 if one of these | pollutants is above t | he threshold. |  |

\*\* Notice of a GHG action is determined by action type. Initial and major modification always require notice. Voluntary updates require a consolidated notice if there is a change to BACT. Project emission increases of CO2e (CO2 equivalent) are not relevant for determining public notice of GHG permit actions.

| <ul> <li>D. Is public notice required for this project as represented in this PI-1?</li> <li>If no, proceed to Section III Small Business Classification.</li> <li>Note: public notice applicability for this project may change throughout the technical review.</li> </ul> | Yes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>E. Are any HAPs to be authorized/re-authorized with this project?</b> The category "HAPs" must be specifically listed in the public notice if the project authorizes (reauthorizes for renewals) any HAP pollutants.                                                      | Yes |

| II. Public Notice Information                 |                                                                                               |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------|
| Complete this section if public notice is rec | quired (determined in the above section) or if you are not sure if public notice is required. |
| A. Contact Information                        |                                                                                               |
| Enter the contact information for the perso   | on responsible for publishing. This is a designated representative who is responsible         |
| for ensuring public notice is properly publis | shed in the appropriate newspaper and signs are posted at the facility site. This person      |
| will be contacted directly when the TCEQ      | is ready to authorize public notice for the application.                                      |
| Prefix (Mr., Ms., Dr., etc.):                 | Mr.                                                                                           |
| First Name:                                   | Clayton                                                                                       |
| Last Name:                                    | Curtis                                                                                        |
| Title:                                        | Director Regulatory Compliance USGC Terminals                                                 |
| Company Name:                                 | Enbridge Inc.                                                                                 |
| Mailing Address:                              | 915 North Eldridge Parkway                                                                    |
| Address Line 2:                               | Suite 1100                                                                                    |
| City:                                         | Houston                                                                                       |
| State:                                        | ТХ                                                                                            |
| ZIP Code:                                     | 77079                                                                                         |
| Telephone Number:                             | 713-627-5400                                                                                  |
| Fax Number:                                   |                                                                                               |
| Email Address:                                | clayton.curtis@enbridge.com                                                                   |
| Enter the contact information for the Tech    | nical Contact. This is the designated representative who will be listed in the public notice  |
| as a contact for additional information.      |                                                                                               |
| Prefix (Mr., Ms., Dr., etc.):                 | Mr.                                                                                           |
| First Name:                                   | Clayton                                                                                       |
| Last Name:                                    | Curtis                                                                                        |
| Title:                                        | Director Regulatory Compliance USGC Terminals                                                 |
| Company Name:                                 | Enbridge Inc.                                                                                 |
| Mailing Address:                              | 915 North Eldridge Parkway                                                                    |
| Address Line 2:                               | Suite 1100                                                                                    |
| City:                                         | Houston                                                                                       |
| State:                                        | ТХ                                                                                            |
| ZIP Code:                                     | 77079                                                                                         |
| Telephone Number:                             | 713-627-5400                                                                                  |
| Fax Number:                                   |                                                                                               |
| Email Address:                                | clayton.curtis@enbridge.com                                                                   |

#### B. Public place

Place a hard copy of the full application (including the entire completed PI-1 and all attachments) at a public place in the county where the facilities are or will be located. You must state where in the county the application will be available for public review and comment. The location must be a public place and described in the notice. A public place is a location which is owned and operated by public funds (such as libraries, county courthouses, city halls) and cannot be a commercial enterprise. You are required to pre-arrange this availability with the public place indicated below. The application must remain available from the first day of publication through the designated comment period.

If this is an application for a PSD, nonattainment, or FCAA §112(g) permit, the public place must have internet access available for the public as required in 30 TAC § 39.411(f)(3).

If the application is submitted to the agency with information marked as Confidential, you are required to indicate which specific portions of the application are not being made available to the public. These portions of the application must be accompanied with the following statement: *Any request for portions of this application that are marked as confidential must be submitted in writing, pursuant to the Public Information Act, to the TCEQ Public Information Coordinator, MC 197, P.O. Box 13087, Austin, Texas 78711-3087.* 

| Name of Rublic Place:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sinton Dublic Libron                                                                 |                       |                                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|------------------------------------|--|--|--|
| Develoal Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sinton Public Library                                                                |                       |                                    |  |  |  |
| Address Line 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                       |                                    |  |  |  |
| Address Line 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sinton                                                                               |                       |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sinton                                                                               |                       |                                    |  |  |  |
| ZIP Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78387                                                                                |                       |                                    |  |  |  |
| County:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | San Patricio                                                                         |                       |                                    |  |  |  |
| Has the public place granted authorization viewing and copying?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to place the application for public                                                  | Yes                   |                                    |  |  |  |
| Does the public place have Internet access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s available for the public?                                                          | Yes                   |                                    |  |  |  |
| C. Alternate Language Publication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                       |                                    |  |  |  |
| In some cases, public notice in an alternate language is required. If an elementary or middle school nearest to the facility is in a school district required by the Texas Education Code to have a bilingual program, a bilingual notice will be required. If there is no bilingual program required in the school nearest the facility, but children who would normally attend those schools are eligible to attend bilingual programs elsewhere in the school district, the bilingual notice will also be required. If it is determined that alternate language notice is required, you are responsible for ensuring that the publication in the alternate language is complete and accurate in that language. |                                                                                      |                       |                                    |  |  |  |
| Is a bilingual program required by the Texa District?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as Education Code in the School                                                      | Yes                   |                                    |  |  |  |
| Are the children who attend either the elen<br>closest to your facility eligible to be enrolle<br>the district?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes                                                                                  |                       |                                    |  |  |  |
| If yes to either question above, list which la<br>bilingual program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spanish                                                                              |                       |                                    |  |  |  |
| Enter the second required language, if app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olicable.                                                                            |                       |                                    |  |  |  |
| Enter the third required language, if applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | able.                                                                                |                       |                                    |  |  |  |
| Enter the fourth required language, if appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cable.                                                                               |                       |                                    |  |  |  |
| D. PSD and Nonattainment Permits Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                    |                       |                                    |  |  |  |
| If this is an application for emissions of GF<br>"Consolidated Public Notice". Note: Separa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IGs, select either "Separate Public Noti<br>ate public notices requires a separate a | ce" or<br>pplication. | Consolidated Public Notice         |  |  |  |
| We must notify the applicable county judge received. This information can be obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e and presiding officer when a PSD or N<br>I at the link below:                      | lonattainment peri    | nit or modification application is |  |  |  |
| https://www.txdirectory.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |                       |                                    |  |  |  |
| Provide the information for the County Ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dge for the location where the facility is                                           | or will be located.   |                                    |  |  |  |
| The Honorable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Judge David Krebs                                                                    |                       |                                    |  |  |  |
| Mailing Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400 West Sinton Street                                                               |                       |                                    |  |  |  |
| Address Line 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | #109                                                                                 |                       |                                    |  |  |  |
| City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sinton                                                                               |                       |                                    |  |  |  |
| State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ТХ                                                                                   |                       |                                    |  |  |  |
| ZIP Code: 78387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                       |                                    |  |  |  |
| Provide the information for the <b>Presiding Officer(s)</b> of the municipality for this facility site. This is frequently the Mayor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                       |                                    |  |  |  |
| First Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oscar                                                                                | ,                     |                                    |  |  |  |
| Last Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adame                                                                                |                       |                                    |  |  |  |
| Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tle: Mayor                                                                           |                       |                                    |  |  |  |
| Mailing Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2671 San Angelo                                                                      |                       |                                    |  |  |  |
| Address Line 2: PO Drawer 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                       |                                    |  |  |  |
| City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |                       |                                    |  |  |  |
| tate: TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                       |                                    |  |  |  |
| ZIP Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78362                                                                                |                       |                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                       |                                    |  |  |  |

| Provide the information for the Regional C  | Council of Government. A list of councils can be found at the link below: |  |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| https://www.txregionalcouncil.org/display.p | hp?page=regions_map.php                                                   |  |  |  |  |  |
| Regional Council of Government:             | egional Council of Government: Coastal Bend Council of Governments        |  |  |  |  |  |
| Mailing Address:                            | 2910 Leopard St.                                                          |  |  |  |  |  |
| Address Line 2:                             |                                                                           |  |  |  |  |  |
| City:                                       | Corpus Christi                                                            |  |  |  |  |  |
| State:                                      | Texas                                                                     |  |  |  |  |  |
| ZIP Code:                                   | 78408                                                                     |  |  |  |  |  |
| Answer the questions related to Class I ar  | eas.                                                                      |  |  |  |  |  |
| Are the proposed facilities located within  | No                                                                        |  |  |  |  |  |
| 100 km or less of an affected state or      |                                                                           |  |  |  |  |  |
| Class I Area?                               |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |
|                                             |                                                                           |  |  |  |  |  |

#### III. Small Business Classification

Complete this section to determine small business classification. If a small business requests a permit, agency rules (30 TAC § 39.603(f)(1)(A)) allow for alternative public notification requirements if all of the following criteria are met. If these requirements are met, public notice does not have to include publication of the prominent (12 square inch) newspaper notice.

| Does the company (including parent companies and subsidiary companies) have fewer than 100 employees or less than \$6 million in annual gross receipts? | No |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                         |    |
|                                                                                                                                                         |    |
|                                                                                                                                                         |    |
| Small business classification:                                                                                                                          | No |

| IV. Plain Language Summary                                                                                                                                                                        |     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Applications deemed administratively complete by May 1, 2022 must provide a plain language summary of the application to be posted on the TCEQ website. Templates can be found at the link below. |     |  |  |  |
| https://www.tceq.texas.gov/permitting/air/guidance/newsourcereview/nsrapp-tools.html                                                                                                              |     |  |  |  |
| Is a Plain Language Summary as required by 30 TAC § 39.405(k) provided with the application?                                                                                                      | Yes |  |  |  |
| Is a Plain Language Summary in an alternative language as required by 30 TAC § 39.426(c) provided with the application?                                                                           | Yes |  |  |  |

## Texas Commission on Environmental Quality Form PI-1 General Application

Federal Applicability Company: Ingleside Clean Ammonia Partners, LLC

| I. General Information                                                                                 |    |  |  |  |
|--------------------------------------------------------------------------------------------------------|----|--|--|--|
| A. Does this project require multiple federal applicability analyses that cannot be combined into one? | No |  |  |  |
|                                                                                                        |    |  |  |  |
| B. Is a retrospective federal applicability analysis required for this project?                        | No |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |
|                                                                                                        |    |  |  |  |

| II. Nonattainment NSR Applicability Summary                                                                 |                                                                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Step 1: Determine if the site is in a nonattainment area for any criteria pollutant(s) or precursor(s)      |                                                                         |  |  |  |
| County (selected in General sheet section IV):                                                              | San Patricio                                                            |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
| Current papattelement designation:                                                                          | This project will be located in an area currently designated attainment |  |  |  |
|                                                                                                             | or unclassified for all criteria pollutants and precursors.             |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
| Should the project be reviewed under a different nonattainment designation? If yes, select the correct      | No - use current designation                                            |  |  |  |
| reason.                                                                                                     |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
| Step 1 Determination: This project will be located in an area designated attainment or unclassified for all | criteria pollutants or precursors. Nonattainment NSR is not required.   |  |  |  |
|                                                                                                             |                                                                         |  |  |  |
|                                                                                                             |                                                                         |  |  |  |

#### Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability Company: Ing

Applicability Company: Ingleside Clean Ammonia Partners, LLC

| IV. PSD Applicability Summary                                                                                                                             |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1: Determine in the project i                                                                                                                        | s a named source.                                                     | nlightion. If no course type applies                                                                                                                    | Chamical process plants (other t                                                                                                                                                                                                                                                                                                                                                                            | an otheral by formontation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| select "Other/Not Listed". Note: Th                                                                                                                       | is list is based on 40 CFR § 51.166                                   | (b)(1)(i)(a).                                                                                                                                           | Chemical process plants (other ti                                                                                                                                                                                                                                                                                                                                                                           | ian ethanol by lermentation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                           |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                           |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                           |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                           |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Step 1 Determination: This is a nar                                                                                                                       | med source and the PSD major sou                                      | rce threshold is 100 tpy of any one                                                                                                                     | pollutant. Include fugitive emission                                                                                                                                                                                                                                                                                                                                                                        | ns in the current sitewide PTE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Of Defermine if the site is a                                                                                                                             | Alexandre by an analysis the                                          | at alternative DTE to the main                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                             | A I to make the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step 2: Determine if the site is cu<br>information about including or e                                                                                   | urrently major by comparing the<br>excluding fugitive emissions in th | current sitewide PTE to the majo<br>e PTE calculation.                                                                                                  | r source threshold. Read the ste                                                                                                                                                                                                                                                                                                                                                                            | p 1 determination above for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           |                                                                       |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pollutant                                                                                                                                                 |                                                                       | Current Sitewide PTE (tpv)                                                                                                                              | Major Source Threshold                                                                                                                                                                                                                                                                                                                                                                                      | Current Sitewide PTE ≥ Maior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pollutant                                                                                                                                                 |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is                                                                                         | Major Source Threshold<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                             | Current Sitewide PTE ≥ Major<br>Source Threshold?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pollutant                                                                                                                                                 |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD                                                                        | Major Source Threshold<br>(tpy)                                                                                                                                                                                                                                                                                                                                                                             | Current Sitewide PTE ≥ Major<br>Source Threshold?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pollutant                                                                                                                                                 |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD                                                                        | Major Source Threshold<br>(tpy)<br>100                                                                                                                                                                                                                                                                                                                                                                      | Current Sitewide PTE ≥ Major<br>Source Threshold?<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CO<br>NOx                                                                                                                                                 |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13                                                          | Major Source Threshold<br>(tpy)<br>100<br>100                                                                                                                                                                                                                                                                                                                                                               | Current Sitewide PTE ≥ Major<br>Source Threshold?<br>Yes<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pollutant<br>CO<br>NOx<br>PM                                                                                                                              |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>>                                                     | Major Source Threshold<br>(tpy)<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                        | Current Sitewide PTE ≥ Major       Source Threshold?       Yes       No       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pollutant<br>CO<br>NOX<br>PM<br>PM10                                                                                                                      |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>90.13<br>><br>13.09                                                 | Major Source Threshold<br>(tpy)<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                 | Current Sitewide PTE ≥ Major       Source Threshold?       Yes       No       Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pollutant<br>CO<br>NOx<br>PM<br>PM10<br>PM2.5                                                                                                             |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>><br>13.09<br>12.37                                   | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100                                                                                                                                                                                                                                                                           | Current Sitewide PTE ≥ Major       Source Threshold?       Yes       No       Yes       No       No       No       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pollutant<br>CO<br>NOX<br>PM<br>PM10<br>PM2.5<br>SO2                                                                                                      |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>><br>13.09<br>12.37<br>3.86                           | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100                                                                                                                                                                                                     | Current Sitewide PTE ≥ Major       Source Threshold?       Yes       No       Yes       No       No       No       No       No       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pollutant<br>CO<br>NOX<br>PM<br>PM10<br>PM2.5<br>SO2<br>Ozone (as VOC)                                                                                    |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>><br>13.09<br>12.37<br>3.86<br>33.22                  | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100                                                                                                                                             | Current Sitewide PTE ≥ Major         Source Threshold?         Yes         No         Yes         No                                                                                                                                                                                                                                                                                                                                                                                       |
| Pollutant<br>CO<br>NOx<br>PM<br>PM10<br>PM2.5<br>SO2<br>Ozone (as VOC)<br>Ozone (as NOx)                                                                  |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>90.13<br>><br>13.09<br>12.37<br>3.86<br>33.22<br>90.13              | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100                                                                                                                               | Current Sitewide PTE ≥ Major         Source Threshold?         Yes         No         Yes         No                                                                                                                                                                                                                                                                                                                     |
| Pollutant<br>CO<br>NOx<br>PM<br>PM10<br>PM2.5<br>SO2<br>Ozone (as VOC)<br>Ozone (as NOx)<br>Pb                                                            |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>><br>13.09<br>12.37<br>3.86<br>33.22<br>90.13         | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100                                                                                     | Current Sitewide PTE ≥ Major         Source Threshold?         Yes         No         Yes         No         No |
| Pollutant<br>CO<br>NOx<br>PM<br>PM10<br>PM2.5<br>SO2<br>Ozone (as VOC)<br>Ozone (as NOx)<br>Pb<br>H2S                                                     |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>><br>13.09<br>12.37<br>3.86<br>33.22<br>90.13<br>0.87 | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100                                                         | Current Sitewide PTE ≥ Major         Source Threshold?         Yes         No         Yes         No                                                                                                                                                                                                                                                                                                                                                                            |
| Pollutant<br>CO<br>NOx<br>PM<br>PM10<br>PM2.5<br>SO2<br>Ozone (as VOC)<br>Ozone (as NOx)<br>Pb<br>H2S<br>TRS                                              |                                                                       | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>90.13<br>><br>13.09<br>12.37<br>3.86<br>33.22<br>90.13<br>0.87      | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100                                                         | Current Sitewide PTE ≥ Major         Source Threshold?         Yes         No         Yes         No         -         No         -         No         -                                                                                                                                                                                                                                                                                                  |
| Pollutant<br>CO<br>NOx<br>PM<br>PM10<br>PM2.5<br>SO2<br>Ozone (as VOC)<br>Ozone (as NOx)<br>Pb<br>H2S<br>TRS<br>Reduced sulfur compounds (includ          | ling H2S)                                                             | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>><br>13.09<br>12.37<br>3.86<br>33.22<br>90.13<br>0.87 | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100                                           | Current Sitewide PTE ≥ Major         Source Threshold?         Yes         No         Yes         No         -         No         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                            |
| Pollutant<br>CO<br>NOx<br>PM<br>PM10<br>PM2.5<br>SO2<br>Ozone (as VOC)<br>Ozone (as NOx)<br>Pb<br>H2S<br>TRS<br>Reduced sulfur compounds (includ<br>H2SO4 | ling H2S)                                                             | Current Sitewide PTE (tpy)<br>enter ">" to indicate the site is<br>major for PSD<br>><br>90.13<br>><br>13.09<br>12.37<br>3.86<br>33.22<br>90.13<br>0.87 | Major Source Threshold<br>(tpy)           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100 | Current Sitewide PTE ≥ Major         Source Threshold?         Yes         No         Yes         No         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                               |

Step 2 Determination: The current sitewide PTE for at least one pollutant is at or above the major source threshold. The site is an existing major source. If there are sources at the site other than those in the Unit Types - Emission Rates sheet, remember to attach a list of authorization numbers, FINs, EPNs, and PTEs. Continue to the next step.

#### Texas Commission on Environmental Quality Form PI-1 General Application Federal Applicability Company: In

Date: October 12, 2023 Permit #: To be assigned

Federal Applicability Company: Ingleside Clean Ammonia Partners, LLC

| Pollutant                                                                                                                                                                                                                                                                                                      | Project Emissions Increase (tpy)                                                                                                                                                                                                                                                                               | Netting Threshold<br>(tpy)                                                                                                                                                                                           | Increase ≥ Threshold?                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO                                                                                                                                                                                                                                                                                                             | <mark>216.97</mark>                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                  | Yes                                                                                                                                                                                                                                                                |
| NOx                                                                                                                                                                                                                                                                                                            | 90.13                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                                |
| PM                                                                                                                                                                                                                                                                                                             | 183.71                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                                |
| M10                                                                                                                                                                                                                                                                                                            | 13.09                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                                 |
| PM2.5                                                                                                                                                                                                                                                                                                          | 12.37                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                                |
| 02                                                                                                                                                                                                                                                                                                             | 3.86                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                                 |
| Dzone (as VOC)                                                                                                                                                                                                                                                                                                 | 33.22                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                                 |
| zone (as NOx)                                                                                                                                                                                                                                                                                                  | 90.13                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                                |
| b                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                | 0.6                                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                 |
| 2\$                                                                                                                                                                                                                                                                                                            | 0.87                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                                 |
| RS                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                                 |
| educed sulfur compounds (including H2S)                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                   | No                                                                                                                                                                                                                                                                 |
| 2SO4                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                    | No                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                    | No                                                                                                                                                                                                                                                                 |
| luoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2F<br>tep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission                                                      | of at least one regulated pollutant is at or above<br>for each criteria pollutant or precursor to demo<br>ignificant. Compare the net emissions incre<br>ons in the net emissions increase calculatio                                                                                                          | the associated netting threshol<br>onstrate how the increase was on<br>ase for each regulated polluta<br>n if this is a named source.                                                                                | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the                                                                                                                                                                         |
| Iuoride (excluding HF)<br>Step 3 Determination: The project emissions increase of<br>ontinue to the next step. Remember to attach Table 2f<br>Step 4: Determine if the net emissions increase is s<br>issociated significant level. Include fugitive emission<br>Pollutant                                     | of at least one regulated pollutant is at or above<br>- for each criteria pollutant or precursor to demo<br>ignificant. Compare the net emissions incre<br>ons in the net emissions increase calculatio<br>Net Emissions Increase<br>(tpy)                                                                     | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)                                                  | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?                                                                                                                                                |
| luoride (excluding HF)<br>itep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>itep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission<br>follutant                                       | ignificant. Compare the net emissions incre<br>ons in the net emissions increase calculatio<br>Net Emissions Increase<br>(tpy)<br>216.97                                                                                                                                                                       | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100                                           | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes                                                                                                                                         |
| luoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>tep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission<br>rollutant<br>CO<br>IOx                            | if at least one regulated pollutant is at or above<br>for each criteria pollutant or precursor to demo<br>ignificant. Compare the net emissions incre<br>ons in the net emissions increase calculatio<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13                                                    | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40                                     | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes                                                                                                                                  |
| luoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>tep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission<br>ollutant<br>O<br>Ox                               | ignificant. Compare the net emissions incre<br>ons in the net emissions increase calculation<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13<br>183.71                                                                                                                                                   | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25                               | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes                                                                                                                           |
| Iuoride (excluding HF)<br>itep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>itep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission<br>Pollutant<br>CO<br>IOX<br>PM<br>2M2.5           | ignificant. Compare the net emissions incre<br>Net Emissions Increase calculation<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37                                                                                                                                                                               | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10                         | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                                                             |
| luoride (excluding HF)<br>itep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>itep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission<br>follutant<br>:O<br>IOx<br>M<br>M2.5             | ignificant. Compare the net emissions incre<br>Net Emissions Increase calculation<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37                                                                                                                                                                               | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10                         | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                                                             |
| Iuoride (excluding HF)<br>itep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>itep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission<br>rollutant<br>CO<br>IOX<br>PM<br>PM2.5           | ignificant. Compare the net emissions increase calculations in the net emissions increase calculation 216.97 216.97 90.13 183.71 12.37 00.42                                                                                                                                                                   | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10                         | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes                                                                                                                    |
| luoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>tep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emissic<br>ollutant<br>O<br>Ox<br>M<br>M2.5<br>Izone (as NOx) | f at least one regulated pollutant is at or above<br>f or each criteria pollutant or precursor to demo<br>ignificant. Compare the net emissions incre<br>ons in the net emissions increase calculatio<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37<br>90.13<br>90.13               | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10<br>40<br>40             | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                                                      |
| uoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>tep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emission<br>ollutant<br>O<br>Ox<br>M<br>M2.5<br>zone (as NOx)  | of at least one regulated pollutant is at or above<br>f or each criteria pollutant or precursor to demo-<br>ignificant. Compare the net emissions incre-<br>ons in the net emissions increase calculation<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37<br>90.13<br>90.13           | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10<br>40<br>40<br>40       | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                                               |
| uoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>tep 4: Determine if the net emissions increase is s<br>associated significant level. Include fugitive emission<br>ollutant<br>O<br>Ox<br>M<br>M2.5<br>zone (as NOx) | of at least one regulated pollutant is at or above<br>f or each criteria pollutant or precursor to demo<br>ignificant. Compare the net emissions increase<br>ons in the net emissions increase calculation<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37<br>90.13<br>90.13          | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10<br>40<br>40<br>40       | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                                                      |
| luoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>tep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emissic<br>ollutant<br>O<br>Ox<br>M<br>M2.5<br>Izone (as NOx) | of at least one regulated pollutant is at or above<br>f or each criteria pollutant or precursor to demo<br>ignificant. Compare the net emissions incre-<br>ons in the net emissions increase calculation<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37<br>90.13<br>90.13            | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10<br>40<br>40<br>25       | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                                               |
| luoride (excluding HF)<br>tep 3 Determination: The project emissions increase c<br>ontinue to the next step. Remember to attach Table 2f<br>tep 4: Determine if the net emissions increase is s<br>ssociated significant level. Include fugitive emissi<br>ollutant<br>O<br>Ox<br>M<br>M2.5<br>Izone (as NOx)  | of at least one regulated pollutant is at or above<br>f or each criteria pollutant or precursor to demo-<br>ignificant. Compare the net emissions incre-<br>ons in the net emissions increase calculation<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37<br>90.13<br>90.13<br>90.13  | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10<br>40<br>40<br>40<br>40 | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                                        |
| Iluoride (excluding HF) Step 3 Determination: The project emissions increase continue to the next step. Remember to attach Table 2f Step 4: Determine if the net emissions increase is second significant level. Include fugitive emission Pollutant CO IOX M M2.5 Jzone (as NOx)                              | of at least one regulated pollutant is at or above<br>f or each criteria pollutant or precursor to demo<br>ignificant. Compare the net emissions increase<br>ons in the net emissions increase calculation<br>Net Emissions Increase<br>(tpy)<br>216.97<br>90.13<br>183.71<br>12.37<br>90.13<br>90.13<br>90.13 | the associated netting threshol<br>onstrate how the increase was of<br>ase for each regulated polluta<br>n if this is a named source.<br>Significant Level<br>(tpy)<br>100<br>40<br>25<br>10<br>40<br>25<br>40<br>40 | d. Netting is required for these pollut<br>calculated.<br>ant that requires netting to the<br>Increase ≥ Threshold?<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>A<br>Yes<br>A<br>Yes<br>A<br>Yes<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A |

**Texas Commission on Environmental Quality** Form PI-1 General Application

Federal Applicability Company: Ingleside Clean Ammonia Partners, LLC

| V. GHG PSD Applicability Sum                                                                         | mary                                                                                                                 |                                                                                     |                                                   |                                   |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|
| Step 1: Determine whether the                                                                        | project requires PSD permitting for                                                                                  | or a non-GHG regulated pollutar                                                     | nt.                                               |                                   |
| Step 1 Determination: At least on                                                                    | e other regulated pollutant requires F                                                                               | PSD permitting.                                                                     |                                                   |                                   |
| Step 2: Determine whether this                                                                       | is an existing or a new major stat                                                                                   | ionary source for PSD.                                                              |                                                   |                                   |
| Step 2 Determination: This is an e                                                                   | existing major stationary source for P                                                                               | PSD.                                                                                |                                                   |                                   |
| Step 3: Determine whether nett<br>CO2e basis. Include fugitive en                                    | ing is required. Compare the projention in the project emission in the project emission in                           | ect emissions increase to the th<br>crease calculation if this is a na              | resholds of 0 tpy of GHGs on a ma<br>amed source. | ass basis and 75,000 tpy on a     |
| Is the project emissions increase                                                                    | of GHGs greater than 0 tpy on a mas                                                                                  | ss basis?                                                                           | Yes                                               |                                   |
| Pollutant                                                                                            |                                                                                                                      | Project Emissions Increase<br>(tpy)                                                 | Threshold<br>(tpy)                                | Increase ≥ Threshold?             |
| CO2e                                                                                                 |                                                                                                                      | 3,376,116.96                                                                        | 75,000                                            | Yes                               |
| GHGs, continue to step 4. Remer<br>Step 4: Determine if the net em<br>emissions in the net emissions | mber to attach Table 2F for each poll<br>issions increase is significant. Co<br>increase calculation if this is a na | utant to demonstrate how the incr<br>mpare the net emissions increa<br>imed source. | ease was calculated.                              | or GHG and CO2e. Include fugitive |
| Is the net emissions increase of C                                                                   | GHGs greater than 0 tpy on a mass b                                                                                  | asis?                                                                               | Yes                                               |                                   |
| Pollutant                                                                                            |                                                                                                                      | Net Emissions Increase<br>(tpy)                                                     | Major Modification Threshold<br>(tpy)             | Increase ≥ Threshold?             |
| CO2e                                                                                                 |                                                                                                                      | 3376116.96                                                                          | 75,000                                            | Yes                               |
| Step 4 Determination: The net en<br>Remember to attach Table 3F for                                  | nissions increase exceeds 0 tpy of G<br>each pollutant to demonstrate how t                                          | HGs on a mass basis and equals<br>he increase was calculated.                       | or exceeds 75,000 tpy on a CO2e b                 | asis. GHG permitting is required. |
| VI. Federal Applicability Summa                                                                      | Nonattainment NSR is not required                                                                                    | ysis may be required.                                                               |                                                   |                                   |
| Nonattainment.                                                                                       | Nonattainment Nort is not required                                                                                   |                                                                                     |                                                   |                                   |
| PSD:<br>(expand row height if needed)                                                                | PSD review is required for the follo                                                                                 | wing pollutants: Ozone (as NOx),                                                    | NOx, CO, PM, PM2.5.                               |                                   |
| GHG PSD:                                                                                             | GHG PSD is required.                                                                                                 |                                                                                     |                                                   |                                   |

| I. Expedited Permitting Request                                           |                             |                |
|---------------------------------------------------------------------------|-----------------------------|----------------|
| Are you requesting to expedite this project?                              |                             | Yes            |
| Is this request being made at the time of initial application submittal,  | as opposed to part way      | Yes            |
| through the project?                                                      |                             |                |
|                                                                           |                             |                |
|                                                                           |                             |                |
|                                                                           |                             |                |
| Surcharge amount due:                                                     |                             | \$20,000       |
|                                                                           |                             |                |
| Must request expedited processing and pay the surpharge when sul          | braitting the opermit appli | ation through  |
| STEERS                                                                    | omitting the ePermit applic | cation through |
|                                                                           |                             |                |
|                                                                           |                             |                |
| II. General Information - Non-Renewal                                     |                             |                |
| Is this project for new facilities controlled and operated directly by th | e federal government?       | No             |
| (30 TAC § 116.141(b)(1) and 30 TAC § 116.163(a))                          |                             |                |
|                                                                           |                             |                |
| A fee of \$75,000 shall be required if no estimate of capital project co  | ost is included with the    | Yes            |
| permit application. (30 TAC § 116.141(d)) Select "yes" here to use t      | his option.                 |                |
| Select Application Type                                                   | Major Application           |                |
|                                                                           |                             |                |
|                                                                           |                             |                |
|                                                                           |                             |                |
|                                                                           |                             |                |
|                                                                           |                             |                |
|                                                                           |                             |                |
|                                                                           |                             |                |

In signing the "General" sheet with this fee worksheet attached, I certify that the total estimated capital cost of the project as defined in 30 TAC §116.141 is equal to or less than the above figure. I further state that I have read and understand Texas Water Code § 7.179, which defines Criminal Offenses for certain violations, including intentionally or knowingly making, or causing to be made, false material statements or representations.

| Your estimated capital cost: | Maximum fee applies. |
|------------------------------|----------------------|
| Permit Application Fee:      | \$75,000.00          |
|                              |                      |
|                              |                      |
|                              |                      |
|                              |                      |

| VII. Total Permit Fees                                                        |             |
|-------------------------------------------------------------------------------|-------------|
| Note: fees can be paid together with one payment or as two separate payments. |             |
| Non-Renewal Fee                                                               | \$75,000.00 |
|                                                                               |             |
| Total                                                                         | \$75,000.00 |

| VIII. Payment Information                                                                                                               |                 |              |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| A. Payment One (required)                                                                                                               |                 |              |
| Was the fee paid online?                                                                                                                |                 | Yes          |
| Enter the fee amount:                                                                                                                   |                 | \$ 95,000.00 |
| Enter the check, money order, ePay Voucher, or other transaction<br>number (enter "STEERS" if submitting and paying through<br>STEERS): | STEERS          |              |
| Enter the Company name as it appears on the check:                                                                                      | Paid via STEERS |              |
|                                                                                                                                         |                 |              |
|                                                                                                                                         |                 |              |
|                                                                                                                                         |                 |              |
|                                                                                                                                         |                 |              |
|                                                                                                                                         |                 |              |
| C. Total Paid                                                                                                                           |                 | \$95,000.00  |

| IX. Professional Engineer Seal Requirement                                              |     |
|-----------------------------------------------------------------------------------------|-----|
| Is the estimated capital cost of the project above \$2 million?                         | Yes |
| Is this project subject to an exemption contained in the Texas Engineering Practice Act | No  |
| (TEPA)? (30 TAC § 116.110(f))                                                           |     |
| Is the application required to be submitted under the seal of a Texas licensed P.E.?    | Yes |
| Note: an electronic PE seal is acceptable.                                              |     |

# Texas Commission on Environmental Quality Form PI-1 General Application

Impacts

Company: Ingleside Clean Ammonia Partners, LLC

| Pollutant Does this pollutant How will<br>require PSD project n<br>review? requirem |     | How will you demonstrate that this<br>project meets all applicable<br>requirements? | Notes                                                                                                                                                                                                                                                                                                      |  |  |
|-------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ozone                                                                               | Yes | Protocol (required for all PSD projects,<br>excluding GHG PSD)                      | Attach a protocol meeting all requirements listed on the TCEQ website.                                                                                                                                                                                                                                     |  |  |
| VOC                                                                                 | No  | MERA steps 0-2 AND Modeling (screen or refined)                                     | Attach both an "Electronic Modeling Evaluation Workbook" (EMEW) AND a detailed description of which MERA step was met. Include speciated emission rates with the total VOC and/or PM species corresponding to the short-term and long-term differences represented on the Unit Types-Emission Rates sheet. |  |  |
| PM                                                                                  | Yes | Protocol (required for all PSD projects,<br>excluding GHG PSD)                      | Attach a protocol meeting all requirements listed on the TCEQ website.                                                                                                                                                                                                                                     |  |  |
| PM10                                                                                | No  | Modeling: screen or refined                                                         | Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).                                                                                                                                                                                                                                       |  |  |
| NH3                                                                                 | No  | MERA steps 0-2 AND Modeling (screen or refined)                                     | Attach both an "Electronic Modeling Evaluation Workbook" (EMEW) AND a detailed description of which MERA step was met. Include speciated emission rates with the total VOC and/or PM species corresponding to the short-term and long-term differences represented on the Unit Types-Emission Rates sheet. |  |  |
| NOx                                                                                 | Yes | Protocol (required for all PSD projects,<br>excluding GHG PSD)                      | Attach a protocol meeting all requirements listed on the TCEQ website.                                                                                                                                                                                                                                     |  |  |
| со                                                                                  | Yes | Protocol (required for all PSD projects,<br>excluding GHG PSD)                      | Attach a protocol meeting all requirements listed on the TCEQ website.                                                                                                                                                                                                                                     |  |  |
| PM2.5                                                                               | Yes | Protocol (required for all PSD projects,<br>excluding GHG PSD)                      | Attach a protocol meeting all requirements listed on the TCEQ website.                                                                                                                                                                                                                                     |  |  |
| SO2                                                                                 | No  | Modeling: screen or refined                                                         | Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).                                                                                                                                                                                                                                       |  |  |
| CO2                                                                                 | No  | Not applicable                                                                      | This pollutant is not a part of this project or does not require an impacts analysis.                                                                                                                                                                                                                      |  |  |
| CH4                                                                                 | No  | Not applicable                                                                      | This pollutant is not a part of this project or does not require an impacts analysis.                                                                                                                                                                                                                      |  |  |

#### Texas Commission on Environmental Quality Form PI-1 General Application Impacts Company:

| Pollutant      | Does this pollutant<br>require PSD<br>review? | How will you demonstrate that this<br>project meets all applicable<br>requirements? | Notes                                                                                                                                                                                                                                                                                                          |
|----------------|-----------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N2O            | No                                            | Not applicable                                                                      | This pollutant is not a part of this project or does not require an impacts analysis.                                                                                                                                                                                                                          |
| CO2 Equivalent | Yes                                           | None (GHG-PSD Only)                                                                 | An air quality analysis for GHGs (i.e., air dispersion modeling, ambient air monitoring, additional impacts, or Class I area impacts) is not required.                                                                                                                                                         |
| HAPs           | No                                            | MERA steps 0-2 AND Modeling (screen or refined)                                     | Attach both an "Electronic Modeling Evaluation Workbook" (EMEW) AND a detailed description of which MERA step was met. Include speciated emission rates with the total VOC and/or PM species corresponding to the short-term and long-term differences represented on the Unit Types-<br>Emission Rates sheet. |
| H2S            | No                                            | Modeling: screen or refined                                                         | Attach a completed "Electronic Modeling Evaluation Workbook" (EMEW).                                                                                                                                                                                                                                           |

#### Texas Commission on Environmental Quality Form PI-1 General Application BACT

| Action Requested | FINs  | Unit Type     | Pollutant | Current Tier I BACT                                                                                                                    | Confirm | Additional Notes                               |
|------------------|-------|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|
| New/Modified     | CTWR1 | Cooling Tower | PM        | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Drift < 0.001% achieved by drift eliminators | Yes     | Drift < 0.0005% achieved by drift eliminators. |
|                  |       |               | NH3       | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                              |         | Non-contact cooling tower design.              |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               | MSS       | Same as normal operation BACT requirements.                                                                                            | Yes     |                                                |
| New/Modified     | CTWR2 | Cooling Tower | PM        | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Drift < 0.001% achieved by drift eliminators | Yes     | Drift < 0.0005% achieved by drift eliminators. |
|                  |       |               | NH3       | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                              | Yes     | Non-contact cooling tower design.              |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               |           |                                                                                                                                        |         |                                                |
|                  |       |               | MSS       | Same as normal operation BACT requirements.                                                                                            | Yes     |                                                |
| Action Requested | FINs     | Unit Type                                     | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confirm | Additional Notes                                                                                                                                                                                                                                                                            |
|------------------|----------|-----------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | BLR-AUX1 | Boiler: Liquid and Gas Fuel, > 40<br>MMBtu/hr | VOC            | Good combustion practices.                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes     | Unit will use natural gas or hydrogen as fuel.                                                                                                                                                                                                                                              |
|                  |          |                                               | NOx            | Specify fuel type(s) to be fired.<br>When firing natural gas:<br>0.01 lb/MMBtu achieved by<br>When firing plant fuel gas: 0.015 lb/MMBtu achieved<br>Note: plant fuel gas may contain up to 75% natural gas. Specifics: <50% H2; > 920<br>Btu/dscf.<br>Emission limits typically achieved using dry-low NOx combustors, limiting fuel<br>consumption, SCR, and/or water or steam injection. Specify technique(s).<br>Fuel oil firing limited to 760 hours/yr. | Yes     | Unit will use natural gas or hydrogen as fuel. Unit will utilize NOx reducing technologies in its design to meet the specified EF (0.01 lb/MMBtu). The unit will start up using natural gas and then run on hydrogen for routine operations. The routine firing rate is 20% of the maximum. |
|                  |          |                                               | со             | 50 ppmv at 3% O2 achieved by good combustion practices, oxidation catalyst, and/or maintenance of the boiler. Specify technique(s).                                                                                                                                                                                                                                                                                                                           | Yes     | Unit will use natural gas or hydrogen as fuel. CO EF = 50 ppmv at 3% O2, achieved by good combustion practices and maintenance of the boiler. The unit will start up using natural gas and then run on hydrogen for routine operations. The routine firing rate is 20% of the maximum.      |
|                  |          |                                               | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. Less than 5% opacity. Good combustion practices.                                                                                                                                                                                                                                                                                                                       | Yes     | Unit will use natural gas or hydrogen as fuel.                                                                                                                                                                                                                                              |
|                  |          |                                               | SO2            | Firing low sulfur fuel and good combustion practices.                                                                                                                                                                                                                                                                                                                                                                                                         | Yes     | Unit will use natural gas or hydrogen as fuel.                                                                                                                                                                                                                                              |
|                  |          |                                               | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | Unit will use natural gas or hydrogen as fuel and use good combustion<br>practices. The unit will start up using natural gas and then run on<br>hydrogen for routine operations. The routine firing rate is 20% of the<br>maximum.                                                          |
|                  |          |                                               | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | Unit will use natural gas or hydrogen as fuel and use good combustion<br>practices. The unit will start up using natural gas and then run on<br>hydrogen for routine operations. The routine firing rate is 20% of the<br>maximum.                                                          |
|                  |          |                                               | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | Unit will use natural gas or hydrogen as fuel and use good combustion<br>practices. The unit will start up using natural gas and then run on<br>hydrogen for routine operations. The routine firing rate is 20% of the<br>maximum.                                                          |
|                  |          |                                               | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                 |
|                  |          |                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                                                                                                                                             |
|                  |          | 1                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                                                                                                                                             |
|                  |          |                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       |                                                                                                                                                                                                                                                                                             |
|                  |          |                                               | MSS            | Minimizing the duration of these activities and operating the facility in accordance with<br>best management practices and good air pollution control practices                                                                                                                                                                                                                                                                                               | Yes     |                                                                                                                                                                                                                                                                                             |

| Action Requested | FINs  | Unit Type | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                              | Confirm | Additional Notes                                                                                                                    |
|------------------|-------|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | H-201 | Heater    | VOC            | Firing pipeline quality natural gas and good combustion practices. Specify if firing a<br>different fuel.                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | NOx            | Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu.<br>Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.          | Yes     | NOx EF = 0.01 lb/MMBtu (routine) and 0.025 lb/MMBtu (startup, maximum<br>of 48 hrs/yr)<br>Unit will use SCR and equipped with CEMS. |
|                  |       |           |                | CEMS required for 100 MMBtu/hr or greater.                                                                                                                                                                                                                                                                                       |         |                                                                                                                                     |
|                  |       |           | со             | 50 ppmv corrected to 3% O2                                                                                                                                                                                                                                                                                                       | Yes     | CO EF = 25 ppmv at 3% O2 (routine) and 50 ppmv at 3% O2 (startup,<br>maximum of 48 hrs/yr)                                          |
|                  |       |           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. Maximum opacity 5%                                                                                                                                                                                                                        | Yes     |                                                                                                                                     |
|                  |       |           | SO2            | Maximum 0.6% sulfur content any liquid fuel or 5 grains for pipeline quality sweet natural gas. Provide details.                                                                                                                                                                                                                 | Yes     | Unit will use pipeline quality natural gas (maximum of 5 gr S/100 dscf) or<br>desulfurized process gas                              |
|                  |       |           | NH3            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | NH3 EF = 10 ppmv at 3% O2                                                                                                           |
|                  |       |           | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | HAPs in the process gas will be combusted with 99% DRE                                                                              |
|                  |       |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                         |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                     |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                     |
|                  |       |           | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                     |
| New/Modified     | H-202 | Heater    | VOC            | Firing pipeline quality natural gas and good combustion practices. Specify if firing a<br>different fuel.                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | NOx            | Burners with the best NOx performance given the burner configuration and gaseous fuel<br>used. Specify the proposed emission rate (performance is an annual average) and<br>provide justification if NOx>0.01 lb/MMBtu.<br>Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01<br>lb/MMBtu. | Yes     | NOx EF = 0.01 lb/MMBtu (routine) and 0.025 lb/MMBtu (startup, maximum<br>of 48 hrs/yr)<br>Unit will use SCR and equipped with CEMS. |
|                  |       |           |                | CEMS required for 100 MMBtu/hr or greater.                                                                                                                                                                                                                                                                                       |         |                                                                                                                                     |
|                  |       |           | со             | 50 ppmv corrected to 3% O2                                                                                                                                                                                                                                                                                                       | Yes     | CO EF = 25 ppmv at 3% O2 (routine) and 50 ppmv at 3% O2 (startup,<br>maximum of 48 hrs/yr)                                          |
|                  |       |           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Maximum opacity 5%                                                                                                                                                                                                                     | Yes     |                                                                                                                                     |
|                  |       |           | SO2            | Maximum 0.6% sulfur content any liquid fuel or 5 grains for pipeline quality sweet natural gas. Provide details.                                                                                                                                                                                                                 | Yes     | Unit will use pipeline quality natural gas (maximum of 5 gr S/100 dscf) or<br>desulfurized process gas                              |
|                  |       |           | NH3            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | NH3 EF = 10 ppmv at 3% O2                                                                                                           |
|                  |       |           | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | HAPs in the process gas will be combusted with 99% DRE                                                                              |
|                  |       |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |       |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                         |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                     |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                     |
|                  |       |           | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                     |

| Action Requested | FINs         | Unit Type | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                            | Confirm | Additional Notes                                                                                                                    |
|------------------|--------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | H-201, H-202 | 0         | VOC            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | NOx            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | CO             | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.                                                                                                                                                                                                                                                                                         | Yes     | Emission cap                                                                                                                        |
|                  |              |           |                | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                     |
|                  |              |           | SO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | NH3            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
|                  |              |           |                |                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                     |
|                  |              |           | MSS            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | Emission cap                                                                                                                        |
| New/Modified     | H-203        | Heater    | VOC            | Firing pipeline quality natural gas and good combustion practices. Specify if firing a<br>different fuel.                                                                                                                                                                                                                                                                      | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |              |           | NOx            | Burners with the best NOx performance given the burner configuration and gaseous fuel<br>used. Specify the proposed emission rate (performance is an annual average) and<br>provide justification if NOx>0.01 lb/MMBtu.<br>Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01<br>lb/MMBtu.<br>CEMS required for 100 MMBtu/hr or greater. | Yes     | NOx EF = 0.01 lb/MMBtu (routine) and 0.025 lb/MMBtu (startup, maximum<br>of 48 hrs/yr)<br>Unit will use SCR and equipped with CEMS. |
|                  |              |           | со             | 50 ppmv corrected to 3% O2                                                                                                                                                                                                                                                                                                                                                     | Yes     | CO EF = 25 ppmv at 3% O2 (routine) and 50 ppmv at 3% O2 (startup, maximum of 48 hrs/yr)                                             |
|                  |              |           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Maximum opacity 5%                                                                                                                                                                                                                                                                   | Yes     |                                                                                                                                     |
|                  |              |           | SO2            | Maximum 0.6% sulfur content any liquid fuel or 5 grains for pipeline quality sweet natural gas. Provide details.                                                                                                                                                                                                                                                               | Yes     | Unit will use pipeline quality natural gas (maximum of 5 gr S/100 dscf) or<br>desulfurized process gas                              |
|                  |              |           | NH3            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | NH3 EF = 10 ppmv at 3% O2                                                                                                           |
|                  |              |           | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | HAPs in the process gas will be combusted with 99% DRE                                                                              |
|                  |              |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |              |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices.                            |
|                  |              |           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | The unit can fire pipeline quality natural gas or process gas and will use good combustion practices.                               |
|                  |              |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                      | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                         |
|                  |              |           |                |                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                     |
|                  |              |           |                |                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                     |
|                  |              |           | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                                                                                                                                                                    | Yes     |                                                                                                                                     |

| Action Requested | FINs         | Unit Type | Pollutant      | Current Tier I BACT                                                                                                                                                                                                     | Confirm | Additional Notes                                                                                         |
|------------------|--------------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------|
| New/Modified     | H-204        | Heater    | VOC            | Firing pipeline quality natural gas and good combustion practices. Specify if firing a<br>different fuel.                                                                                                               | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices. |
|                  |              |           | NOx            | Burners with the best NOx performance given the burner configuration and gaseous fuel<br>used. Specify the proposed emission rate (performance is an annual average) and<br>provide justification if NOx>0.01 lb/MMBtu. | Yes     | NOx EF = 0.01 lb/MMBtu (routine) and 0.025 lb/MMBtu (startup, maximum of 48 hrs/yr)                      |
|                  |              |           |                | Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.                                                                                                                      |         |                                                                                                          |
|                  |              |           |                | CEMS required for 100 MMBtu/hr or greater.                                                                                                                                                                              |         |                                                                                                          |
|                  |              |           | со             | 50 ppmv corrected to 3% O2                                                                                                                                                                                              | Yes     | CO EF = 25 ppmv at 3% O2 (routine) and 50 ppmv at 3% O2 (startup,<br>maximum of 48 hrs/yr)               |
|                  |              |           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM. Maximum opacity 5%                                                                                                               | Yes     |                                                                                                          |
|                  |              |           | SO2            | Maximum 0.6% sulfur content any liquid fuel or 5 grains for pipeline quality sweet natural gas. Provide details.                                                                                                        | Yes     | Unit will use pipeline quality natural gas (maximum of 5 gr S/100 dscf) or<br>desulfurized process gas   |
|                  |              |           | NH3            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | NH3 EF = 10 ppmv at 3% O2                                                                                |
|                  |              |           | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | HAPs in the process gas will be combusted with 99% DRE                                                   |
|                  |              |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices. |
|                  |              |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices. |
|                  |              |           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | The unit can fire pipeline quality natural gas or process gas and will use<br>good combustion practices. |
|                  |              |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                              |
|                  |              |           |                |                                                                                                                                                                                                                         |         |                                                                                                          |
|                  |              |           |                |                                                                                                                                                                                                                         |         |                                                                                                          |
|                  |              |           | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                             | Yes     |                                                                                                          |
| New/Modified     | H-203, H-204 | 0         | VOC            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | NOx            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | CO             | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Fill out the Additional Notes column to demonstrate how BACT will be met.                                                     | Yes     | Emission cap                                                                                             |
|                  |              |           | SO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | NH3            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |
|                  |              |           |                |                                                                                                                                                                                                                         |         |                                                                                                          |
|                  |              |           |                |                                                                                                                                                                                                                         |         |                                                                                                          |
|                  |              |           | MSS            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                               | Yes     | Emission cap                                                                                             |

| Action Requested | FINs  | Unit Type | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                              | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                               |
|------------------|-------|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | H-590 | Heater    | VOC            | Firing pipeline quality natural gas and good combustion practices. Specify if firing a<br>different fuel.                                                                                                                                                                                                                        | Yes     | The unit will fire pipeline quality natural gas use good combustion<br>practices.                                                                                                                                                                                                                                                              |
|                  |       |           | NOX            | Burners with the best NOx performance given the burner configuration and gaseous fuel used. Specify the proposed emission rate (performance is an annual average) and provide justification if NOx>0.01 lb/MMBtu.<br>Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01 lb/MMBtu.          | Yes     | NOx EF = 0.01 lb/MMBtu and operate for a maximum 48 hrs/yr<br>This unit will operate at a maximum rate of 116 MMBtu/hr and nominal rate<br>of 85 MMBtu/hr. The only operates for 48 hrs/yr during plant startup.<br>Because of the limited use and nominal rate, ICAP proposes to comply<br>with BACT requirements for heaters < 100 MMBtu/hr. |
|                  |       |           | 00             | ECEMS required for 100 Minibid/III of greater.                                                                                                                                                                                                                                                                                   | Vee     |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Maximum opacity 5%                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           | SO2            | Maximum 0.6% sulfur content any liquid fuel or 5 grains for pipeline quality sweet natural gas. Provide details.                                                                                                                                                                                                                 | Yes     | Unit will use pipeline quality natural gas (maximum of 5 gr S/100 dscf)                                                                                                                                                                                                                                                                        |
|                  |       |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit will fire pipeline quality natural gas, use good combustion<br>practices, and operation will be limited to 48 hrs/yr.                                                                                                                                                                                                                 |
|                  |       |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit will fire pipeline quality natural gas, use good combustion<br>practices, and operation will be limited to 48 hrs/yr.                                                                                                                                                                                                                 |
|                  |       |           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit will fire pipeline quality natural gas, use good combustion<br>practices, and operation will be limited to 48 hrs/yr.                                                                                                                                                                                                                 |
|                  |       |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                    |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                                                                                                                                                                                                                                |
| New/Modified     | H-591 | Heater    | VOC            | Firing pipeline quality natural gas and good combustion practices. Specify if firing a<br>different fuel.                                                                                                                                                                                                                        | Yes     | The unit will fire pipeline quality natural gas use good combustion<br>practices.                                                                                                                                                                                                                                                              |
|                  |       |           | NOX            | Burners with the best NOx performance given the burner configuration and gaseous fuel<br>used. Specify the proposed emission rate (performance is an annual average) and<br>provide justification if NOx>0.01 lb/MMBtu.<br>Cost data must be submitted for SCR if firing rate is > 300 MMBtu/hr and burner is >0.01<br>lb/MMBtu. | Yes     | NOx EF = 0.01 lb/MMBtu and operate for a maximum 48 hrs/yr<br>This unit will operate at a maximum rate of 116 MMBtu/hr and nominal rate<br>of 85 MMBtu/hr. The only operates for 48 hrs/yr during plant startup.<br>Because of the limited use and nominal rate, ICAP proposes to comply<br>with BACT requirements for heaters < 100 MMBtu/hr. |
|                  |       |           |                | CEMS required for 100 MMBtu/hr or greater.                                                                                                                                                                                                                                                                                       |         |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           | CO             | 50 ppmv corrected to 3% O2                                                                                                                                                                                                                                                                                                       | Yes     |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           | PM             | I ne emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Maximum opacity 5%                                                                                                                                                                                                                    | Yes     |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           | SO2            | Maximum 0.6% sulfur content any liquid fuel or 5 grains for pipeline quality sweet natural gas. Provide details.                                                                                                                                                                                                                 | Yes     | Unit will use pipeline quality natural gas (maximum of 5 gr S/100 dscf)                                                                                                                                                                                                                                                                        |
|                  |       |           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit will fire pipeline quality natural gas, use good combustion<br>practices, and operation will be limited to 48 hrs/yr.                                                                                                                                                                                                                 |
|                  |       |           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | The unit will fire pipeline quality natural gas, use good combustion<br>practices, and operation will be limited to 48 hrs/yr.                                                                                                                                                                                                                 |
|                  |       |           | N20            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                        | Yes     | practices, and operation will be limited to 48 hrs/yr.                                                                                                                                                                                                                                                                                         |
|                  |       |           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BAC I will be met.                                                                                                                                                                                                                                                       | res     | BACT for CU2e is achieved by BACT for CU2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                    |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           |                |                                                                                                                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                |
|                  |       |           | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                                                                                                                                                                                                                                |

| Action Requested | FINs     | Unit Type                 | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                 |
|------------------|----------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FW-PUMP1 | Engine: Emergency, Diesel | VOC            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | NOx            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | со             | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | ΡM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.<br>No visible emissions shall leave the property. Visible emissions shall be determined by a<br>standard of no visible emissions exceeding 30 seconds in duration in any six-minute<br>period as determined using EPA TM 22 or equivalent | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | SO2            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |          |                           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |          |                           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter.    |
|                  |          |                           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                      |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       |                                                                                                                                                                                                                  |
|                  |          |                           | MSS            | Minimize duration and occurrence of MSS activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                                                                                                  |

| Action Requested | FINs     | Unit Type                 | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                 |
|------------------|----------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FW-PUMP2 | Engine: Emergency, Diesel | VOC            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | NOx            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | со             | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.<br>No visible emissions shall leave the property. Visible emissions shall be determined by a<br>standard of no visible emissions exceeding 30 seconds in duration in any six-minute<br>period as determined using EPA TM 22 or equivalent | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | SO2            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                           | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |          |                           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |          |                           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter.    |
|                  |          |                           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                      |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |          |                           | MSS            | Minimize duration and occurrence of MSS activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                                                                                                  |

| Action Requested | FINs     | Unit Type                 | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                 |
|------------------|----------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FW-PUMP3 | Engine: Emergency, Diesel | VOC            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | NOx            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | со             | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | РМ             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.<br>No visible emissions shall leave the property. Visible emissions shall be determined by a<br>standard of no visible emissions exceeding 30 seconds in duration in any six-minute<br>period as determined using EPA TM 22 or equivalent | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | SO2            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                           | Yes     |                                                                                                                                                                                                                  |
|                  |          |                           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |          |                           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |          |                           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter.    |
|                  |          |                           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                      |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |          |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       |                                                                                                                                                                                                                  |
|                  |          |                           | MSS            | Minimize duration and occurrence of MSS activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                                                                                                  |

| Action Requested | FINs | Unit Type                 | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                 |
|------------------|------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | EG-1 | Engine: Emergency, Diesel | VOC            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | NOx            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | со             | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | PM             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.<br>No visible emissions shall leave the property. Visible emissions shall be determined by a<br>standard of no visible emissions exceeding 30 seconds in duration in any six-minute<br>period as determined using EPA TM 22 or equivalent | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | SO2            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                           | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |      |                           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |      |                           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter.    |
|                  |      |                           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                      |
|                  |      |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |      |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |      |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |      |                           | MSS            | Minimize duration and occurrence of MSS activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                                                                                                  |

| Action Requested | FINs | Unit Type                 | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                 |
|------------------|------|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | EG-2 | Engine: Emergency, Diesel | VOC            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | NOx            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | со             | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | РМ             | The emission reduction techniques for PM10 and PM2.5 will follow the technique for PM.<br>Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.<br>No visible emissions shall leave the property. Visible emissions shall be determined by a<br>standard of no visible emissions exceeding 30 seconds in duration in any six-minute<br>period as determined using EPA TM 22 or equivalent | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | SO2            | Meeting the requirements of 40 CFR Part 60, Subpart IIII. Firing ultra-low sulfur diesel<br>fuel (no more than 15 ppm sulfur by weight). Limited to 100 hrs./yr. of non-emergency<br>operation. Have a non-resettable runtime meter.                                                                                                                                                                                                                                                                                                                                     | Yes     |                                                                                                                                                                                                                  |
|                  |      |                           | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |      |                           | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |      |                           | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Meeting the requirements of NSPS IIII, firing ultra-low sulfur diesel fuel (no<br>more than 15 ppm sulfur by weight), limited to 100 hrs/yr of non-<br>emergency operation. Have a non-resettable runtime meter. |
|                  |      |                           | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                      |
|                  |      |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |      |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |      |                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                  |
|                  |      |                           | MSS            | Minimize duration and occurrence of MSS activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes     |                                                                                                                                                                                                                  |

| Action Requested | FINs | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-1 | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0641 lb/MMBtu<br>from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's<br>Air Permit Technical Guidance for Chemical Sources: Flares and Vapor<br>Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document<br>can also be found in the TCEQ's 2022 Emissions Inventory Guidelines,<br>Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan<br>2023). |
|                  |      |                | со             | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.5496 lb/MMBtu from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document can also be found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                   |
|                  |      |                | SO2            | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0006 lb/MMBtu<br>from AP-42 Section 1.4, Table 1.4-2. SO2 factor assumes all sulfur in the<br>fuel is converted to SO2.                                                                                                                                                                                                                                                                          |
|                  |      |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 116.9773<br>lb/MMBtu, factor for natural gas from Table C-1, 40 CFR Part 98, Subpart<br>C.                                                                                                                                                                                                                                                                                                         |
|                  |      |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0022 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0002 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | MSS            | Same as permal operation BACT requirements                                                                                                                                                                                         | Vos     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | 11/33          | Same as normal operation DACT requirements.                                                                                                                                                                                        | res     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Action Requested | FINs     | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|----------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-1SUSD | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to<br>three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow<br>monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.0641 lb/MMBtu for process gas and supplemental fuel, Table 4 of the<br>TCEQ's most recent flare guidance document: TCEQ's Air Pernit<br>Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers<br>(DRAFT RG-109, Oct 2000). The factors from this document can also be<br>found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A,<br>Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                                                        |
|                  |          |                | со             | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.5496 lb/MMBtu for process gas and supplemental fuel, Table 4 of the<br>TCEQ's most recent flare guidance document: TCEQ's Air Permit<br>Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers<br>(DRAFT RG-109, Oct 2000). The factors from this document can also be<br>found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A,<br>Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023). 98%<br>of CO in the process stream is oxidized to CO2. |
|                  |          |                | NH3            | Non-VOC: case by case. Flow monitor will be required. Composition or BTU analyzer<br>may be required.                                                                                                                                    | Yes     | 99% DRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |          |                | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds<br>up to three carbons, 98% otherwise. No flaring of halogenated<br>compounds is allowed. Flow monitor required. Composition or BTU<br>analyzer may be required.                                                                                                                                                                                                                                                   |
|                  |          |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>130.1 lb/MMBtu, factor for fuel gas from Table C-1, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                                                                                   |
|                  |          |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0066 lb/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                                                                                  |
|                  |          |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0013 lb/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                                                                                  |
|                  |          |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | -        |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                | MSS            | Same as normal operation BACT requirements                                                                                                                                                                                               | Ves     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                | 14100          |                                                                                                                                                                                                                                          | 103     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Action Requested | FINs | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-2 | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0641 lb/MMBtu<br>from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's<br>Air Permit Technical Guidance for Chemical Sources: Flares and Vapor<br>Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document<br>can also be found in the TCEQ's 2022 Emissions Inventory Guidelines,<br>Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan<br>2023). |
|                  |      |                | СО             | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.5496 lb/MMBtu from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document can also be found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                   |
|                  |      |                | SO2            | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0006 lb/MMBtu<br>from AP-42 Section 1.4, Table 1.4-2. SO2 factor assumes all sulfur in the<br>fuel is converted to SO2.                                                                                                                                                                                                                                                                          |
|                  |      |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 116.9773<br>lb/MMBtu, factor for natural gas from Table C-1, 40 CFR Part 98, Subpart<br>C.                                                                                                                                                                                                                                                                                                         |
|                  |      |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0022 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0002 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | MSS            | Same as normal operation BACT requirements                                                                                                                                                                                         | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | 1100           | came as normal operation BACT requirements.                                                                                                                                                                                        | 103     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Action Requested | FINs     | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|----------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-2SUSD | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to<br>three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow<br>monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |          |                | NOX            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.0641 lb/MMBtu for process gas and supplemental fuel, Table 4 of the<br>TCEQ's most recent flare guidance document: TCEQ's Air Permit<br>Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers<br>(DRAFT RG-109, Oct 2000). The factors from this document can also be<br>found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A,<br>Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023). |
|                  |          |                | СО             | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.5496 lb/MMBtu for process gas and supplemental fuel, Table 4 of the TCEQ's most recent flare guidance document: TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document can also be found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                |
|                  |          |                | NH3            | Non-VOC: case by case. Flow monitor will be required. Composition or BTU analyzer<br>may be required.                                                                                                                                    | Yes     | 99% DRE                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |          |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>130.1 lb/MMBtu, factor for fuel gas from Table C-1, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                            |
|                  |          |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0066 lb/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                           |
|                  |          |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0013 lb/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                           |
|                  |          |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                       |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |          |                | MSS            | Same as normal operation BACT requirements                                                                                                                                                                                               | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |          |                | 1100           |                                                                                                                                                                                                                                          | 103     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Action Requested | FINs     | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|----------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-3     | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to<br>three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow<br>monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0641 lb/MMBtu<br>from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's<br>Air Permit Technical Guidance for Chemical Sources: Flares and Vapor<br>Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document<br>can also be found in the TCEQ's 2022 Emissions Inventory Guidelines,<br>Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan<br>2023). |
|                  |          |                | СО             | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | This source is the flare pilot, which is natural gas. EF is 0.5496 lb/MMBtu<br>from the TCEQ's most recent flare guidance document: TCEQ's Air Permit<br>Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers<br>(DRAFT RG-109, Oct 2000). The factors from this document can also be<br>found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A,<br>Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).               |
|                  |          |                | SO2            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0006 lb/MMBtu<br>from AP-42 Section 1.4, Table 1.4-2. SO2 factor assumes all sulfur in the<br>fuel is converted to SO2.                                                                                                                                                                                                                                                                          |
|                  |          |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | This source is the flare pilot, which is natural gas. EF is 116.9773<br>lb/MMBtu, factor for natural gas from Table C-1, 40 CFR Part 98, Subpart<br>C.                                                                                                                                                                                                                                                                                                         |
|                  |          |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0022 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |          |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0002 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |          |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                              | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| New/Modified     | FL-3SUSD | Control: Flare | NOx            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.0641 lb/MMBtu for process gas and supplemental fuel, Table 4 of the<br>TCEQ's most recent flare guidance document: TCEQ's Air Permit<br>Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers<br>(DRAFT RG-109, Oct 2000). The factors from this document can also be<br>found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A,<br>Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                              |
|                  |          |                | NH3            | Non-VOC: case by case. Flow monitor will be required. Composition or BTU analyzer<br>may be required.                                                                                                                                    | Yes     | 99% DRE                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |          |                | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                              | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Action Requested | FINs | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-4 | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0641 lb/MMBtu<br>from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's<br>Air Permit Technical Guidance for Chemical Sources: Flares and Vapor<br>Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document<br>can also be found in the TCEQ's 2022 Emissions Inventory Guidelines,<br>Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan<br>2023). |
|                  |      |                | СО             | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.5496 lb/MMBtu from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document can also be found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                   |
|                  |      |                | SO2            | Provide emission factor used and reference.                                                                                                                                                                                        | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0006 lb/MMBtu<br>from AP-42 Section 1.4, Table 1.4-2. SO2 factor assumes all sulfur in the<br>fuel is converted to SO2.                                                                                                                                                                                                                                                                          |
|                  |      |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 116.9773<br>lb/MMBtu, factor for natural gas from Table C-1, 40 CFR Part 98, Subpart<br>C.                                                                                                                                                                                                                                                                                                         |
|                  |      |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0022 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0002 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                          | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | _              |                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | MSS            | Same as normal operation BACT requirements                                                                                                                                                                                         | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                    | 103     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Action Requested | FINs     | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|----------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-4SUSD | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to<br>three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow<br>monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.0641 lb/MMBtu for process gas and supplemental fuel, Table 4 of the TCEQ's most recent flare guidance document: TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document can also be found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                                                                       |
|                  |          |                | со             | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.5496 lb/MMBtu for process gas and supplemental fuel, Table 4 of the<br>TCEQ's most recent flare guidance document: TCEQ's Air Permit<br>Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers<br>(DRAFT RG-109, Oct 2000). The factors from this document can also be<br>found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A,<br>Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023). 98%<br>of CO in the process stream is oxidized to CO2. |
|                  |          |                | NH3            | Non-VOC: case by case. Flow monitor will be required. Composition or BTU analyzer<br>may be required.                                                                                                                                    | Yes     | 99% DRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |          |                | HAPs           | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds<br>up to three carbons, 98% otherwise. No flaring of halogenated<br>compounds is allowed. Flow monitor required. Composition or BTU<br>analyzer may be required.                                                                                                                                                                                                                                                   |
|                  |          |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>130.1 lb/MMBtu, factor for fuel gas from Table C-1, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                                                                                   |
|                  |          |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0066 lb/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                                                                                  |
|                  |          |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0013 lb/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                                                                                  |
|                  |          |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                | MEE            | Same as permet operation PACT requirements                                                                                                                                                                                               | Vec     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |          |                | 1/133          | Same as normal operation DACT requirements.                                                                                                                                                                                              | res     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Action Requested | FINs | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-5 | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to<br>three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow<br>monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0641 lb/MMBtu<br>from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's<br>Air Permit Technical Guidance for Chemical Sources: Flares and Vapor<br>Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document<br>can also be found in the TCEQ's 2022 Emissions Inventory Guidelines,<br>Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan<br>2023). |
|                  |      |                | со             | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | This source is the flare pilot, which is natural gas. EF is 0.5496 lb/MMBtu from Table 4 of the TCEQ's most recent flare guidance document: TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document can also be found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                   |
|                  |      |                | SO2            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0006 lb/MMBtu<br>from AP-42 Section 1.4, Table 1.4-2. SO2 factor assumes all sulfur in the<br>fuel is converted to SO2.                                                                                                                                                                                                                                                                          |
|                  |      |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | This source is the flare pilot, which is natural gas. EF is 116.9773<br>lb/MMBtu, factor for natural gas from Table C-1, 40 CFR Part 98, Subpart<br>C.                                                                                                                                                                                                                                                                                                         |
|                  |      |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0022 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | This source is the flare pilot, which is natural gas. EF is 0.0002 lb/MMBtu, factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.                                                                                                                                                                                                                                                                                                                 |
|                  |      |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |      |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | MSS            | Same as normal operation BACT requirements                                                                                                                                                                                               | Vos     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |      |                | 00             |                                                                                                                                                                                                                                          | les     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Action Requested | FINs     | Unit Type      | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                      | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|----------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FL-5SUSD | Control: Flare | VOC            | VOC: Meets 40 CFR 60.18. Destruction Efficiency: 99% for certain compounds up to<br>three carbons, 98% otherwise. No flaring of halogenated compounds is allowed. Flow<br>monitor required. Composition or BTU analyzer may be required. | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |          |                | NOx            | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.0641 lb/IMBItu for process gas and supplemental fuel, Table 4 of the<br>TCEQ's most recent flare guidance document: TCEQ's Air Permit<br>Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers<br>(DRAFT RG-109, Oct 2000). The factors from this document can also be<br>found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A,<br>Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023). |
|                  |          |                | со             | Provide emission factor used and reference.                                                                                                                                                                                              | Yes     | 0.5496 lb/MMBtu for process gas and supplemental fuel, Table 4 of the TCEQ's most recent flare guidance document: TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000). The factors from this document can also be found in the TCEQ's 2022 Emissions Inventory Guidelines, Appendix A, Technical Supplement 4: Flares, Table A-7 (RG-360/22, Jan 2023).                 |
|                  |          |                | NH3            | Non-VOC: case by case. Flow monitor will be required. Composition or BTU analyzer<br>may be required.                                                                                                                                    | Yes     | 99% DRE                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |          |                | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>130.1 lb/MMBtu, factor for fuel gas from Table C-1, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                             |
|                  |          |                | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0066 Ib/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                            |
|                  |          |                | N2O            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | Flow monitor required. Composition or BTU analyzer may be required.<br>Use of pipeline quality natural gas as supplemental fuel, as needed. EF is<br>0.0013 lb/MMBtu, factor for fuel gas from Table C-2, 40 CFR Part 98,<br>Subpart C.                                                                                                                                                                                            |
|                  |          |                | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                | Yes     | BACT for CO2e is achieved by BACT for CO2, CH4, and/or N2O.                                                                                                                                                                                                                                                                                                                                                                        |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |          |                |                |                                                                                                                                                                                                                                          | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |          |                |                |                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |          |                | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                              | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Action Requested | FINs | Unit Type                                                                        | Pollutant | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Confirm | Additional Notes                                       |
|------------------|------|----------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
| New/Modified     | TK-1 | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  | moo       | Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. |         |                                                        |
| New/Modified     | TK-2 | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |      |                                                                                  | MCC       | Come on normal execution DACT requirements execut as listed heless.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vee     |                                                        |
|                  |      |                                                                                  |           | Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. | 1 63    |                                                        |

| Action Requested | FINs  | Unit Type                                                                        | Pollutant | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confirm | Additional Notes                                       |
|------------------|-------|----------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
| New/Modified     | ТК-ЗА | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
| -                |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  | MSS       | Same as normal operation BAC1 requirements except as listed below.<br>Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. | Yes     |                                                        |
| New/Modified     | TK-3B | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |       |                                                                                  | MSS       | Same as normal operation BACT requirements except as listed below.<br>Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. | Yes     |                                                        |

| Action Requested | FINs  | Unit Type                                                                        | Pollutant | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Confirm | Additional Notes                                       |
|------------------|-------|----------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
| New/Modified     | TK-4A | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  | MCC       | Come as normal exerction DACT requirements executes listed below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vee     |                                                        |
|                  |       |                                                                                  |           | Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. |         |                                                        |
| New/Modified     | TK-4B | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  | MSS       | Same as normal operation BACT requirements except as listed below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vos     |                                                        |
|                  |       |                                                                                  |           | Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. |         |                                                        |

| Action Requested | FINs  | Unit Type                                                                        | Pollutant | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Confirm | Additional Notes                                       |
|------------------|-------|----------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
| New/Modified     | TK-5A | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  | MCC       | Come as normal exerction DACT requirements executes listed below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vee     |                                                        |
|                  |       |                                                                                  |           | Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. |         |                                                        |
| New/Modified     | TK-5B | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                        |
|                  |       |                                                                                  | MSS       | Same as normal operation BACT requirements except as listed below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vos     |                                                        |
|                  |       |                                                                                  |           | Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. |         |                                                        |

| Action Requested | FINs   | Unit Type                                                                        | Pollutant | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confirm | Additional Notes                                       |
|------------------|--------|----------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
| New/Modified     | TK-WW1 | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        |                                                                                  | NH3       | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  | -      |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  | MSS       | Same as normal operation BACT requirements except as listed below.<br>Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. | Yes     |                                                        |
| New/Modified     | TK-WW2 | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        | •                                                                                | NH3       | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  | MSS       | Same as normal operation BACT requirements except as listed below.<br>Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. | Yes     |                                                        |

| Action Requested | FINs   | Unit Type                                                                        | Pollutant | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confirm | Additional Notes                                       |
|------------------|--------|----------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|
| New/Modified     | TK-WW3 | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        |                                                                                  | NH3       | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  | 1400      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u> |                                                        |
|                  |        |                                                                                  | moo       | Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.                                                                       | 165     |                                                        |
| New/Modified     | TK-SW1 | Storage Tank (1): Fixed roof with<br>capacity < 25,000 gal or TVP < 0.50<br>psia | VOC       | Fixed roof with submerged fill. Uninsulated exterior surfaces exposed to the sun shall be<br>white or aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        |                                                                                  | NH3       | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes     | Tank will be painted white and utilize submerged fill. |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                        |
|                  |        |                                                                                  | MSS       | Same as normal operation BAC1 requirements except as listed below.<br>Fixed roof tank draining:<br>VOC: Send liquid to a covered vessel. If there is any standing liquid within the tank, and<br>the tank is opened to the atmosphere or ventilated, the vapor stream must be controlled<br>until there is no standing liquid or the VOC vapor pressure is less than 0.02 psia. Control<br>device must meet BACT.<br>Acid: Drain to covered vessel. If there is any standing liquid within the tank, and the tank<br>is opened to the atmosphere or ventilated, the vapor stream must be controlled until<br>there is no standing liquid or the acid vapor pressure is less than 0.02 psia. Control<br>device must meet BACT. | res     |                                                        |

| Action Requested | FINs    | Unit Type    | Pollutant      | Current Tier I BACT                                                       | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|---------|--------------|----------------|---------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | VTCO2-1 | Process Vent | со             | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | 99% stream recovery, reuse, and good operational practices. No control<br>is considered BACT for this stream; however, applicant intends to utilize<br>CCS infrastructure and go beyond BACT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |         |              | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | 99% stream recovery, reuse, and good operational practices. Recovered<br>CO2 will be sent offsite for sequestration. No control is considered BACT<br>for this stream; however, applicant intends to utilize CCS infrastructure<br>and go beyond BACT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |         |              | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | 99% stream recovery, reuse, and good operational practices. No control<br>is considered BACT for this stream; however, applicant intends to utilize<br>CCS infrastructure and go beyond BACT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |         |              | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | BACT for CO2e is achieved by BACT for CO2 and CH4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | -       |              | _              |                                                                           | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| N/N A            |         | Draws a Mart | MSS            | Same as normal operation BAC1 requirements.                               | Yes     | No control is considered DAOT (so this stream house on the stream house of the stream |
|                  | 1002-21 |              |                |                                                                           | 103     | to utilize CCS infrastructure and go beyond BACT. CCS infrastructure<br>(provided by a third party) is required for sequestration (proposed BACT<br>for this source). Until the third-party infrastructure is available, no control<br>is considered BACT for this stream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |         |              | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | No control is considered BACT for this stream; however, applicant intends<br>to utilize CCS infrastructure and go beyond BACT. CCS infrastructure<br>(provided by a third party) is required for sequestration (proposed BACT<br>for this source). Until the third-party infrastructure is available, no control<br>is considered BACT for this stream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |         |              | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | No control is considered BACT for this stream; however, applicant intends<br>to utilize CCS infrastructure and go beyond BACT. CCS infrastructure<br>(provided by a third party) is required for sequestration (proposed BACT<br>for this source). Until the third-party infrastructure is available, no control<br>is considered BACT for this stream.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |         |              | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | BACT for CO2e is achieved by BACT for CO2 and CH4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |         |              | MSS            | Same as normal operation BACT requirements.                               | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Action Requested | FINs    | Unit Type    | Pollutant      | Current Tier I BACT                                                       | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|---------|--------------|----------------|---------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | VTCO2-2 | Process Vent | со             | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | Startup venting is short in duration and is not anticipated to occur more than eight hours per year. CCS infrastructure (operated by a third party) may require maintenance and could be offline for up to 90 days (accumulated in hours) per year. There is not a safe technical alternative to venting this stream to atmosphere during a startup or third-party CCS maintenance event; therefore, no control is considered BACT for this stream. |
|                  |         |              | C02            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | Startup venting is short in duration and is not anticipated to occur more than eight hours per year. CCS infrastructure (operated by a third party) may require maintenance and could be offline for up to 90 days (accumulated in hours) per year. There is not a safe technical alternative to venting this stream to atmosphere during a startup or third-party CCS maintenance event; therefore, no control is considered BACT for this stream. |
|                  |         |              | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | Startup venting is short in duration and is not anticipated to occur more than eight hours per year. CCS infrastructure (operated by a third party) may require maintenance and could be offline for up to 90 days (accumulated in hours) per year. There is not a safe technical alternative to venting this stream to atmosphere during a startup or third-party CCS maintenance event; therefore, no control is considered BACT for this stream. |
|                  |         |              | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | BACT for CO2e is achieved by BACT for CO2 and CH4.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              | MSS            | Same as normal operation BACT requirements.                               | Yes     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Action Requested | FINs    | Unit Type    | Pollutant      | Current Tier I BACT                                                       | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                        |
|------------------|---------|--------------|----------------|---------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | VTCO2-3 | Process Vent | со             | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | 99% stream recovery, reuse, and good operational practices. No control<br>is considered BACT for this stream; however, applicant intends to utilize<br>CCS infrastructure and go beyond BACT.                                                                                                                                                           |
|                  |         |              | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | 99% stream recovery, reuse, and good operational practices. Recovered<br>CO2 will be sent offsite for sequestration. No control is considered BACT<br>for this stream; however, applicant intends to utilize CCS infrastructure<br>and go beyond BACT.                                                                                                  |
|                  |         |              | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | 99% stream recovery, reuse, and good operational practices. No control<br>is considered BACT for this stream; however, applicant intends to utilize<br>CCS infrastructure and go beyond BACT.                                                                                                                                                           |
|                  |         |              | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | BACT for CO2e is achieved by BACT for CO2 and CH4.                                                                                                                                                                                                                                                                                                      |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              | _              |                                                                           | _       |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              | Maa            | Oran an exacting DAOT requirements                                        | N       |                                                                                                                                                                                                                                                                                                                                                         |
| Now/Medified     |         | Drasses Vent | MSS            | Same as normal operation BACT requirements.                               | Yes     | No control is considered DACT for this stream, however, continent intende                                                                                                                                                                                                                                                                               |
|                  | 1002-41 |              |                |                                                                           | 103     | to utilize CCS infrastructure and go beyond BACT. CCS infrastructure<br>(provided by a third party) is required for sequestration (proposed BACT<br>for this source). Until the third-party infrastructure is available, no control<br>is considered BACT for this stream.                                                                              |
|                  |         |              | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | No control is considered BACT for this stream; however, applicant intends<br>to utilize CCS infrastructure and go beyond BACT. CCS infrastructure<br>(provided by a third party) is required for sequestration (proposed BACT<br>for this source). Until the third-party infrastructure is available, no control<br>is considered BACT for this stream. |
|                  |         |              | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | No control is considered BACT for this stream; however, applicant intends<br>to utilize CCS infrastructure and go beyond BACT. CCS infrastructure<br>(provided by a third party) is required for sequestration (proposed BACT<br>for this source). Until the third-party infrastructure is available, no control<br>is considered BACT for this stream. |
|                  |         |              | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | BACT for CO2e is achieved by BACT for CO2 and CH4.                                                                                                                                                                                                                                                                                                      |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           | -       |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                         |
|                  |         |              | MSS            | Same as normal operation BACT requirements.                               | Yes     |                                                                                                                                                                                                                                                                                                                                                         |

| Action Requested | FINs    | Unit Type    | Pollutant      | Current Tier I BACT                                                       | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|---------|--------------|----------------|---------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | VTCO2-4 | Process Vent | со             | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | Startup venting is short in duration and is not anticipated to occur more than eight hours per year. CCS infrastructure (operated by a third party) may require maintenance and could be offline for up to 90 days (accumulated in hours) per year. There is not a safe technical alternative to venting this stream to atmosphere during a startup or third-party CCS maintenance event; therefore, no control is considered BACT for this stream. |
|                  |         |              | C02            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | Startup venting is short in duration and is not anticipated to occur more than eight hours per year. CCS infrastructure (operated by a third party) may require maintenance and could be offline for up to 90 days (accumulated in hours) per year. There is not a safe technical alternative to venting this stream to atmosphere during a startup or third-party CCS maintenance event; therefore, no control is considered BACT for this stream. |
|                  |         |              | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | Startup venting is short in duration and is not anticipated to occur more than eight hours per year. CCS infrastructure (operated by a third party) may require maintenance and could be offline for up to 90 days (accumulated in hours) per year. There is not a safe technical alternative to venting this stream to atmosphere during a startup or third-party CCS maintenance event; therefore, no control is considered BACT for this stream. |
|                  |         |              | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met. | Yes     | BACT for CO2e is achieved by BACT for CO2 and CH4.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              |                |                                                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              | MSS            | Same as normal operation BACT requirements                                | Ves     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |         |              | 11/100         | Same as normal operation DACT requirements.                               | ies     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Action Requested | FINs | Unit Type                            | Pollutant      | Current Tier I BACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Confirm | Additional Notes                                                                                                                                                                                                                                                                                                                    |
|------------------|------|--------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New/Modified     | FUG  | Fugitives: Piping and Equipment Leak | VOC            | <ul> <li>Specify which is applicable:</li> <li>1. Uncontrolled VOC emissions &lt; 10 tpy: none</li> <li>2. 10 tpy &lt; uncontrolled VOC emissions &lt; 25 tpy: 28M leak detection and repair program.</li> <li>75% credit for 28M.</li> <li>3. Uncontrolled VOC emissions &gt; 25 tpy: 28VHP leak detection and repair program. 97% credit for valves, 85% for pumps and compressors.</li> <li>4. VOC vp &lt; 0.002 psia: no inspection required, no fugitive emissions expected.</li> <li>For emissions of approved odorous compounds (chlorine, ammonia, hydrogen sulfide, hydrogen cyanide and mercaptans only): AVO inspection twice per shift. Appropriate credit for AVO program.</li> </ul> | Yes     | 3. Uncontrolled VOC emissions > 25 tpy: 28VHP leak detection and repair<br>program. Additionally, 28CNTQ on flanges and connectors. Leak level =<br>500 ppmv.                                                                                                                                                                       |
|                  |      |                                      | СО             | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes     | 28VHP and 28CNTQ programs for VOC will also control emissions of CO.                                                                                                                                                                                                                                                                |
|                  |      |                                      | NH3            | AVO inspection twice per shift. Appropriate credit for AVO program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     |                                                                                                                                                                                                                                                                                                                                     |
|                  |      |                                      | H2S            | AVO inspection twice per shift. Appropriate credit for AVO program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | H2S is emitted only from natural gas piping, where there could be little to<br>no H2S present. The Method 21 programs used for control of VOCs,<br>which will be used to monitor fugitives in natural gas service, will also<br>control H2S. 28VHP and 28CNTQ programs for VOC are proposed as<br>BACT to control emissions of H2S. |
|                  |      |                                      | CO2            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes     | 28VHP and 28CNTQ programs for VOC will also control emissions of<br>CO2.                                                                                                                                                                                                                                                            |
|                  |      |                                      | CH4            | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes     | 28VHP and 28CNTQ programs for VOC will also control emissions of CH4.                                                                                                                                                                                                                                                               |
|                  |      |                                      | CO2 Equivalent | Fill out the Additional Notes column to demonstrate how BACT will be met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes     | BACT for CO2e is achieved by BACT for CO2 and CH4.                                                                                                                                                                                                                                                                                  |
|                  |      |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                     |
|                  |      |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                     |
|                  |      |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                     |
|                  |      |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                     |
|                  |      |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                     |
|                  |      |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                     |
|                  |      |                                      | MSS            | Same as normal operation BACT requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes     |                                                                                                                                                                                                                                                                                                                                     |

| FIN   | Unit Type     | Pollutant | Minimum Monitoring Requirements                                                                                                                                                            | Confirm | Additional Notes for Monitoring                                                       | Proposed Measurement Technique (only con<br>pollutants with a project increase above the |
|-------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| CTWR1 | Cooling Tower | РМ        | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Cooling water circulation rate measured hourly<br>unless maximum circulation rate assumed.      | Yes     |                                                                                       | Other:                                                                                   |
|       |               |           | Large (>50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water daily then reduced to weekly and quarterly with daily conductivity measurement that is correlated. |         |                                                                                       |                                                                                          |
|       |               |           | Small (<50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water measured weekly.                                                                                   |         |                                                                                       |                                                                                          |
|       |               | NH3       | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                       | Yes     | Cooling water recirculation rate measured hourly, NH3 concentration measured monthly. |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
| -     |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
| CTWR2 | Cooling Tower | PM        | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Cooling water circulation rate measured hourly<br>unless maximum circulation rate assumed.      | Yes     |                                                                                       | Other:                                                                                   |
|       |               |           | Large (>50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water daily then reduced to weekly and quarterly with daily conductivity measurement that is correlated. |         |                                                                                       |                                                                                          |
|       |               |           | Small (<50,000 gpm circulation rate): Total Dissolved Solids (TDS) in the cooling water measured weekly.                                                                                   |         |                                                                                       |                                                                                          |
|       |               | NH3       | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                       | Yes     | Cooling water recirculation rate measured hourly, NH3 concentration measured monthly. |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |
|       |               |           |                                                                                                                                                                                            |         |                                                                                       |                                                                                          |

| plete for     | Additional Notes for Measuring                                                                          |
|---------------|---------------------------------------------------------------------------------------------------------|
| SD threshold) |                                                                                                         |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity                                 |
|               | measurement that is correlated.                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               |                                                                                                         |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity                                 |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |
|               | TDS measured daily, then weekly, then quarterly with daily conductivity measurement that is correlated. |

| FIN      | Unit Type                                     | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                                                             | Confirm  | Additional Notes for Monitoring                                                                                                                                                                             | Proposed Measurement Technique (only complete for<br>pollutants with a project increase above the PSD threshold) | Additional Notes for Measuring                                                                                                                                                                              |
|----------|-----------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLR-AUX1 | Boiler: Liquid and Gas Fuel,<br>> 40 MMBtu/hr | VOC            | totalizing fuel flow meter record monthly<br>fuel analysis for heating value every six month<br>CEMS. Data collected four times per hour and averaged hourly.<br>>100 MMBtu/hr:<br>continuous flow meter average hourly,<br>CO and O2 CEMS                                                                                                                                  | Yes      | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                                           | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|          |                                               | NOx            | totalizing fuel flow meter record monthly<br>fuel analysis for heating value every six month<br>CEMS. Data collected four times per hour and averaged hourly.<br>>100 MMBtu/hr:<br>continuous flow meter average hourly,<br>NOx and O2 CEMS                                                                                                                                 | Yes      |                                                                                                                                                                                                             | CEMS                                                                                                             |                                                                                                                                                                                                             |
|          |                                               | CO             | totalizing fuel flow meter record monthly<br>fuel analysis for heating value every six month<br>visible emission/opacity observations<br>>100 MMBtu/hr:<br>continuous flow meter average hourly,<br>CO and O2 CEMS                                                                                                                                                          | Yes      |                                                                                                                                                                                                             | CEMS                                                                                                             |                                                                                                                                                                                                             |
|          |                                               | PM             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. totalizing fuel flow meter record monthly,<br>fuel analysis for heating value every six month,<br>visible emission/opacity observations daily for major sources and<br>quarterly for minor sources.<br>>100 MMBtu/hr:<br>continuous flow meter average hourly,<br>CO and O2 CEMS | Yes      | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                                           | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|          |                                               | SO2            | totalizing fuel flow meter record monthly<br>fuel analysis for heating value and total sulfur every six month<br>visible emission/opacity observations<br>Refinery:<br>Continuous H2S monitoring of fuel gas                                                                                                                                                                | Yes      | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |                                                                                                                  |                                                                                                                                                                                                             |
|          |                                               | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                        | Yes      | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                                           | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|          |                                               | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                        | Yes      | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                                           | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|          |                                               | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                        | Yes      | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                                           | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|          |                                               | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                        | Yes<br>, | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                        | Other:                                                                                                           | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|          |                                               |                |                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                             |
|          |                                               |                |                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                             |
|          |                                               |                |                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                             |

| FIN   | Unit Type | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                                                                                                         | Confirm | Additional Notes for Monitoring                                                                                                                                                                             | Proposed Measurement Technique (only com<br>pollutants with a project increase above the |
|-------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| H-201 | Heater    | VOC            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied.                                                                                                                                                                                                                                                                                              | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | NOx            | <ul> <li>&lt;100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. Data used with stack testing results.</li> <li>≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. CEMS. Data collected four times per hour and averaged hourly.</li> </ul> | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | со             | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic<br>monitoring of fuel composition and heating value, if and when varied.<br>Data used with stack testing results.<br>≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic<br>monitoring of fuel composition and heating value, if and when varied.<br>CEMS. Data collected four times per hour and averaged hourly.                  | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | РМ             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Quarterly visible emission checks, followed by<br>an opacity observation if visible emissions are observed.<br>Continuously monitor the fuel firing rates. Periodic monitoring of fuel<br>composition and heating value, if and when varied.                                                                                 | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | SO2            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. SO2 and O2 CEMS if a major source.<br>Refinery requires continuous monitoring of H2S in fuel, except where low sulfur content by design is established.                                                                                                                                      | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |                                                                                          |
|       |           | NH3            | SCR requires continuous monitoring for slip reduced to an hourly average.                                                                                                                                                                                                                                                                                                                                               | Yes     |                                                                                                                                                                                                             |                                                                                          |
|       |           | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |                                                                                          |
|       |           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                    | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute increments, reported on a block 1-hr average basis; and 2. Semiannual fuel analysis for fuel gas and process gas                            | Other:                                                                                   |
|       |           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                    | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                        | Other:                                                                                   |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |

| plete for<br>SD threshold) | Additional Notes for Measuring                                                                                                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |

| FIN   | Unit Type | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                                                                         | Confirm | Additional Notes for Monitoring                                                                                                                                                                             | Proposed Measurement Technique (only com<br>pollutants with a project increase above the |
|-------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| H-202 | Heater    | VOC            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied.                                                                                                                                                                                                                                                              | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | NOx            | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. Data used with stack testing results. ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. CEMS. Data collected four times per hour and averaged hourly. | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | со             | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. Data used with stack testing results. ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. CEMS. Data collected four times per hour and averaged hourly. | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | РМ             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Quarterly visible emission checks, followed by<br>an opacity observation if visible emissions are observed.<br>Continuously monitor the fuel firing rates. Periodic monitoring of fuel<br>composition and heating value, if and when varied.                                                 | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | SO2            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. SO2 and O2 CEMS if a major source.<br>Refinery requires continuous monitoring of H2S in fuel, except where low sulfur content by design is established.                                                                                                      | Yes     |                                                                                                                                                                                                             |                                                                                          |
|       |           | NH3            | SCR requires continuous monitoring for slip reduced to an hourly average.                                                                                                                                                                                                                                                                                                               | Yes     |                                                                                                                                                                                                             |                                                                                          |
|       |           | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |                                                                                          |
|       |           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                        | Other:                                                                                   |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |

| plete for<br>SD threshold) | Additional Notes for Measuring                                                                                                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | 1. Totalizing fuel flow meter to take measurements in 15-minute                                                                                                                                             |
|                            | increments, reported on a block 1-hr average basis; and<br>2. Semiannual fuel analysis for fuel gas and process gas                                                                                         |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |

| FIN          | Unit Type | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                 | Confirm | Additional Notes for Monitoring | Proposed Measurement Technique (only complete for<br>pollutants with a project increase above the PSD threshold) | Additional Notes for Measuring |
|--------------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|
| H-201, H-202 | 0         | VOC            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | NOx            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | СО             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | PM             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Fill out the Additional Notes for Monitoring<br>column to demonstrate how monitoring will be conducted to<br>demonstrate compliance with the permit. | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | SO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | NH3            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           |                |                                                                                                                                                                                                                                                 |         |                                 |                                                                                                                  |                                |
|              |           |                |                                                                                                                                                                                                                                                 |         |                                 |                                                                                                                  |                                |

| FIN   | Unit Type | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                                                                         | Confirm | Additional Notes for Monitoring                                                                                                                                                                             | Proposed Measurement Technique (only com<br>pollutants with a project increase above the |
|-------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| H-203 | Heater    | VOC            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied.                                                                                                                                                                                                                                                              | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | NOx            | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. Data used with stack testing results. ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. CEMS. Data collected four times per hour and averaged hourly. | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | со             | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. Data used with stack testing results. ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. CEMS. Data collected four times per hour and averaged hourly. | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | РМ             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Quarterly visible emission checks, followed by<br>an opacity observation if visible emissions are observed.<br>Continuously monitor the fuel firing rates. Periodic monitoring of fuel<br>composition and heating value, if and when varied.                                                 | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | SO2            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. SO2 and O2 CEMS if a major source.<br>Refinery requires continuous monitoring of H2S in fuel, except where low sulfur content by design is established.                                                                                                      | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |                                                                                          |
|       |           | NH3            | SCR requires continuous monitoring for slip reduced to an hourly average.                                                                                                                                                                                                                                                                                                               | Yes     |                                                                                                                                                                                                             |                                                                                          |
|       |           | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |                                                                                          |
|       |           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate how monitoring will be conducted to demonstrate compliance with the permit.                                                                                                                                                                                                                                          | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                        | Other:                                                                                   |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |

| plete for<br>SD threshold) | Additional Notes for Measuring                                                                                                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | 1. Totalizing fuel flow meter to take measurements in 15-minute                                                                                                                                             |
|                            | increments, reported on a block 1-hr average basis; and<br>2. Semiannual fuel analysis for fuel gas and process gas                                                                                         |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |
| FIN   | Unit Type | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                                                                         | Confirm | Additional Notes for Monitoring                                                                                                                                                                             | Proposed Measurement Technique (only com<br>pollutants with a project increase above the |
|-------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| H-204 | Heater    | VOC            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied.                                                                                                                                                                                                                                                              | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | NOx            | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. Data used with stack testing results. ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. CEMS. Data collected four times per hour and averaged hourly. | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | со             | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. Data used with stack testing results. ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. CEMS. Data collected four times per hour and averaged hourly. | Yes     |                                                                                                                                                                                                             | CEMS                                                                                     |
|       |           | PM             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Quarterly visible emission checks, followed by<br>an opacity observation if visible emissions are observed.<br>Continuously monitor the fuel firing rates. Periodic monitoring of fuel<br>composition and heating value, if and when varied.                                                 | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | SO2            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel composition and heating value, if and when varied. SO2 and O2 CEMS if a major source.<br>Refinery requires continuous monitoring of H2S in fuel, except where low sulfur content by design is established.                                                                                                      | Yes     |                                                                                                                                                                                                             |                                                                                          |
|       |           | NH3            | SCR requires continuous monitoring for slip reduced to an hourly average.                                                                                                                                                                                                                                                                                                               | Yes     |                                                                                                                                                                                                             |                                                                                          |
|       |           | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |                                                                                          |
|       |           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> | Other:                                                                                   |
|       |           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                    | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                        | Other:                                                                                   |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |
|       |           |                |                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                             |                                                                                          |

| plete for<br>SD threshold) | Additional Notes for Measuring                                                                                                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            |                                                                                                                                                                                                             |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            | <ol> <li>Totalizing fuel flow meter to take measurements in 15-minute<br/>increments, reported on a block 1-hr average basis; and</li> <li>Semiannual fuel analysis for fuel gas and process gas</li> </ol> |
|                            |                                                                                                                                                                                                             |

| FIN          | Unit Type | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                 | Confirm | Additional Notes for Monitoring | Proposed Measurement Technique (only complete for<br>pollutants with a project increase above the PSD threshold) | Additional Notes for Measuring |
|--------------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|
| H-203, H-204 | 0         | VOC            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | NOx            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | CO             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | PM             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Fill out the Additional Notes for Monitoring<br>column to demonstrate how monitoring will be conducted to<br>demonstrate compliance with the permit. | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | SO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | NH3            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                            | Yes     | Emission cap                    |                                                                                                                  |                                |
|              |           |                |                                                                                                                                                                                                                                                 |         |                                 |                                                                                                                  |                                |
|              |           |                |                                                                                                                                                                                                                                                 |         |                                 |                                                                                                                  |                                |

| FIN   | Unit Type | Pollutant      | Minimum Monitoring Requirements                                         | Confirm | Additional Notes for Monitoring                                      | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                       |
|-------|-----------|----------------|-------------------------------------------------------------------------|---------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|
|       |           |                |                                                                         |         |                                                                      | pollutants with a project increase above the PSD threshold) |                                                                      |
| H-590 | Heater    | VOC            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute      | Other:                                                      | 1. Totalizing fuel flow meter to take measurements in 15-minute      |
|       |           |                | composition and heating value, if and when varied.                      |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and              |
|       |           |                |                                                                         |         | 2. Semiannual fuel analysis for fuel gas and process gas             |                                                             | 2. Semiannual fuel analysis for fuel gas and process gas             |
|       |           | NOx            | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic     | Yes     | This unit will operate at a maximum rate of 116 MMBtu/hr and         | Other:                                                      | Because of the limited use and nominal rate, ICAP proposes to comply |
|       |           |                | monitoring of fuel composition and heating value, if and when varied.   |         | nominal rate of 85 MMBtu/hr. The only operates for 48 hrs/yr during  |                                                             | with monitoring requirements for heaters < 100 MMBtu/hr.             |
|       |           |                | Data used with stack testing results.                                   |         | plant startup. ICAP will continuously monitor the fuel firing rates, |                                                             |                                                                      |
|       |           |                | 2100 MMBtu/nr: Continuously monitor the fuel firing rates. Periodic     |         | periodically monitor the fuel composition and heating value, if and  |                                                             |                                                                      |
|       |           |                | CEMS. Data collected four times per hour and everaged hourly.           |         | when varied.                                                         |                                                             |                                                                      |
|       |           |                | CEMS. Data collected four times per flour and averaged flourity.        |         |                                                                      |                                                             |                                                                      |
|       |           | со             | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic     | Yes     | This unit will operate at a maximum rate of 116 MMBtu/hr and         | Other:                                                      | Because of the limited use and nominal rate. ICAP proposes to comply |
|       |           |                | monitoring of fuel composition and heating value, if and when varied.   |         | nominal rate of 85 MMBtu/hr. The only operates for 48 hrs/yr during  |                                                             | with monitoring requirements for heaters < 100 MMBtu/hr.             |
|       |           |                | Data used with stack testing results.                                   |         | plant startup. ICAP will continuously monitor the fuel firing rates, |                                                             | <b>.</b> .                                                           |
|       |           |                | ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic     |         | periodically monitor the fuel composition and heating value, if and  |                                                             |                                                                      |
|       |           |                | monitoring of fuel composition and heating value, if and when varied.   |         | when varied.                                                         |                                                             |                                                                      |
|       |           |                | CEMS. Data collected four times per hour and averaged hourly.           |         |                                                                      |                                                             |                                                                      |
|       |           | PM             | The emission monitoring techniques for PM10 and PM2 5 will follow       | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute      | Other:                                                      | 1. Totalizing fuel flow meter to take measurements in 15-minute      |
|       |           |                | the technique for PM. Quarterly visible emission checks, followed by    |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and              |
|       |           |                | an opacity observation if visible emissions are observed.               |         | 2. Semiannual fuel analysis for fuel gas and process gas             |                                                             | 2. Semiannual fuel analysis for fuel gas and process gas             |
|       |           |                |                                                                         |         |                                                                      |                                                             | , , , , , , , , , , , , , , , , , , , ,                              |
|       |           |                | Continuously monitor the fuel firing rates. Periodic monitoring of fuel |         |                                                                      |                                                             |                                                                      |
|       |           |                | composition and heating value, if and when varied.                      |         |                                                                      |                                                             |                                                                      |
|       |           | 802            | Continuously monitor the fuel firing rates. Deriodic monitoring of fuel | Voc     | This unit will operate at a maximum rate of 116 MMPtu/br and         |                                                             |                                                                      |
|       |           | 302            | composition and beating value, if and when varied SO2 and O2            | res     | nominal rate of 85 MMBtu/hr. The only operates for 48 hrs/yr during  |                                                             |                                                                      |
|       |           |                | CEMS if a major source                                                  |         | plant startup ICAP will continuously monitor the fuel firing rates   |                                                             |                                                                      |
|       |           |                | Refinery requires continuous monitoring of H2S in fuel, except where    |         | periodically monitor the fuel composition and heating value if and   |                                                             |                                                                      |
|       |           |                | low sulfur content by design is established.                            |         | when varied.                                                         |                                                             |                                                                      |
|       |           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute      | Other:                                                      | 1. Totalizing fuel flow meter to take measurements in 15-minute      |
|       |           |                | how monitoring will be conducted to demonstrate compliance with the     |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and              |
|       |           |                | permit.                                                                 |         | 2. Semiannual fuel analysis for fuel gas and process gas             |                                                             | 2. Semiannual fuel analysis for fuel gas and process gas             |
|       |           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute      | Other:                                                      | 1. Totalizing fuel flow meter to take measurements in 15-minute      |
|       |           |                | how monitoring will be conducted to demonstrate compliance with the     |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and              |
|       |           | 1100           | permit.                                                                 |         | 2. Semiannual fuel analysis for fuel gas and process gas             | 01                                                          | 2. Semiannual tuel analysis for fuel gas and process gas             |
|       |           | N20            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | 1. I otalizing fuel flow meter to take measurements in 15-minute     | Other:                                                      | 1. I otalizing fuel flow meter to take measurements in 15-minute     |
|       |           |                | now monitoring will be conducted to demonstrate compliance with the     |         | Increments, reported on a block 1-hr average basis; and              |                                                             | Increments, reported on a block 'I-nr average basis; and             |
|       |           | CO2 Equivalant | Fill out the Additional Nates for Monitoring column to demonstrate      | Voc     | 2. Semiannual fuel analysis for fuel gas and process gas             | Othor:                                                      | 2. Semiannual ruel analysis for ruel gas and process gas             |
|       |           | CO2 Equivalent | how monitoring will be conducted to demonstrate compliance with the     | Tes     |                                                                      |                                                             | increments, reported on a block 1 br average basis; and              |
|       |           |                | nemit                                                                   |         |                                                                      |                                                             | 2. Semiannual fuel analysis for fuel das and process das             |
|       |           |                |                                                                         |         |                                                                      |                                                             | 2. Cermannual ruel analysis for fuel yas and process yas             |
|       |           |                |                                                                         |         |                                                                      |                                                             |                                                                      |
|       |           |                |                                                                         |         |                                                                      |                                                             |                                                                      |
|       |           |                |                                                                         |         |                                                                      |                                                             |                                                                      |

| FIN     | Unit Type                 | Pollutant      | Minimum Monitoring Requirements                                         | Confirm | Additional Notes for Monitoring                                      | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                        |
|---------|---------------------------|----------------|-------------------------------------------------------------------------|---------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|
| 11 50 4 |                           | 1/00           |                                                                         |         |                                                                      | pollutants with a project increase above the PSD threshold) |                                                                       |
| H-591   | Heater                    | VOC            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel | Yes     | 1. I otalizing fuel flow meter to take measurements in 15-minute     | Other:                                                      | 1. I otalizing fuel flow meter to take measurements in 15-minute      |
|         |                           |                | composition and heating value, if and when varied.                      |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and               |
|         |                           | 10             |                                                                         |         | 2. Semiannual fuel analysis for fuel gas and process gas             | 01                                                          | 2. Semiannual fuel analysis for fuel gas and process gas              |
|         |                           | NOX            | <100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic     | Yes     | This unit will operate at a maximum rate of 116 MMBtu/hr and         | Other:                                                      | Because of the limited use and nominal rate, ICAP proposes to comply  |
|         |                           |                | monitoring of fuel composition and neating value, if and when varied.   |         | nominal rate of 85 MMBtu/nr. The only operates for 48 nrs/yr during  |                                                             | with monitoring requirements for heaters < 100 MiMBtu/hr.             |
|         |                           |                | >100 MMPtu/br: Continuously monitor the fuel firing rates. Periodia     |         | prant startup. TCAP will continuously monitor the fuel mining rates, |                                                             |                                                                       |
|         |                           |                | 2100 WWDu/III. Continuously monitor the fuel himly fates. Fehould       |         | when veried                                                          |                                                             |                                                                       |
|         |                           |                | CEMS. Data collected four times per bour and averaged bourly.           |         | when valled.                                                         |                                                             |                                                                       |
|         |                           |                | o Emo. Data collected four times per hour and averaged houry.           |         |                                                                      |                                                             |                                                                       |
|         |                           | <u> </u>       | <100 MMPtu/hr: Continuously manitar the fuel firing rates. Periodia     | Voo     | This unit will aparate at a maximum rate of 116 MMPtu/br and         | Other                                                       | Received of the limited use and nominal rate. ICAR proposes to comply |
|         |                           | 00             | monitoring of fuel composition and beating value, if and when varied    | 165     | nominal rate of 85 MMRtu/br. The only operates for 48 brs/yr during  |                                                             | with monitoring requirements for besters < 100 MMBtu/hr               |
|         |                           |                | Data used with stack testing results                                    |         | plant startup ICAP will continuously monitor the fuel firing rates   |                                                             |                                                                       |
|         |                           |                | ≥100 MMBtu/hr: Continuously monitor the fuel firing rates. Periodic     |         | periodically monitor the fuel composition and heating value, if and  |                                                             |                                                                       |
|         |                           |                | monitoring of fuel composition and heating value, if and when varied.   |         | when varied.                                                         |                                                             |                                                                       |
|         |                           |                | CEMS. Data collected four times per hour and averaged hourly.           |         |                                                                      |                                                             |                                                                       |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         |                           | PM             | The emission monitoring techniques for PM10 and PM2.5 will follow       | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute      | Other:                                                      | 1. Totalizing fuel flow meter to take measurements in 15-minute       |
|         |                           |                | the technique for PM. Quarterly visible emission checks, followed by    |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and               |
|         |                           |                | an opacity observation if visible emissions are observed.               |         | 2. Semiannual fuel analysis for fuel gas and process gas             |                                                             | 2. Semiannual fuel analysis for fuel gas and process gas              |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         |                           |                | Continuously monitor the fuel firing rates. Periodic monitoring of fuel |         |                                                                      |                                                             |                                                                       |
|         |                           |                | composition and neating value, if and when varied.                      |         |                                                                      |                                                             |                                                                       |
|         |                           | 502            | Continuously monitor the fuel firing rates. Periodic monitoring of fuel | Yes     | This unit will operate at a maximum rate of 116 MMRtu/br and         |                                                             |                                                                       |
|         |                           |                | composition and heating value, if and when varied. SO2 and O2           |         | nominal rate of 85 MMBtu/hr. The only operates for 48 hrs/yr during  |                                                             |                                                                       |
|         |                           |                | CEMS if a major source.                                                 |         | plant startup. ICAP will continuously monitor the fuel firing rates. |                                                             |                                                                       |
|         |                           |                | Refinery requires continuous monitoring of H2S in fuel, except where    |         | periodically monitor the fuel composition and heating value, if and  |                                                             |                                                                       |
|         |                           |                | low sulfur content by design is established.                            |         | when varied.                                                         |                                                             |                                                                       |
|         |                           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute      | Other:                                                      | 1. Totalizing fuel flow meter to take measurements in 15-minute       |
|         |                           |                | how monitoring will be conducted to demonstrate compliance with the     |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and               |
|         |                           |                | permit.                                                                 |         | 2. Semiannual fuel analysis for fuel gas and process gas             |                                                             | 2. Semiannual fuel analysis for fuel gas and process gas              |
|         |                           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | 1. Totalizing fuel flow meter to take measurements in 15-minute      | Other:                                                      | 1. Totalizing fuel flow meter to take measurements in 15-minute       |
|         |                           |                | how monitoring will be conducted to demonstrate compliance with the     |         | increments, reported on a block 1-hr average basis; and              |                                                             | increments, reported on a block 1-hr average basis; and               |
|         |                           | 1100           | permit.                                                                 |         | 2. Semiannual fuel analysis for fuel gas and process gas             | 01                                                          | 2. Semiannual fuel analysis for fuel gas and process gas              |
|         |                           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | 1. I otalizing fuel flow meter to take measurements in 15-minute     | Other:                                                      | 1. I otalizing fuel flow meter to take measurements in 15-minute      |
|         |                           |                | now monitoring will be conducted to demonstrate compliance with the     |         | 2 Semiannual fuel analysis for fuel gas and process gas              |                                                             | 2. Semiannual fuel analysis for fuel das and process das              |
|         |                           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 CH4 and        | Other <sup>.</sup>                                          | 1 Totalizing fuel flow meter to take measurements in 15-minute        |
|         |                           | COL Equitation | how monitoring will be conducted to demonstrate compliance with the     |         | N2O.                                                                 |                                                             | increments, reported on a block 1-hr average basis; and               |
|         |                           |                | permit.                                                                 |         |                                                                      |                                                             | 2. Semiannual fuel analysis for fuel gas and process gas              |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         | Engine: Emergency Discol  | VOC            | Maniter and record hours of energies                                    | Vee     |                                                                      | Desard keeping                                              |                                                                       |
|         | Engine. Emergency, Diesel | VUC            |                                                                         | 165     |                                                                      | i record keeping                                            |                                                                       |
|         |                           | NOx            | Monitor and record hours of operation                                   | Yes     |                                                                      | Record keeping                                              |                                                                       |
|         |                           | СО             | Monitor and record hours of operation                                   | Yes     |                                                                      | Record keeping                                              |                                                                       |
|         |                           | PM             | The emission monitoring techniques for PM10 and PM2.5 will follow       | Yes     |                                                                      | Record keeping                                              |                                                                       |
|         |                           |                | the technique for PM. Monitor and record hours of operation             |         |                                                                      |                                                             |                                                                       |
|         |                           | 802            | Monitor and record hours of operation                                   | Vos     |                                                                      |                                                             |                                                                       |
|         |                           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | Monitor and record hours of operations                               | Record keeping                                              |                                                                       |
|         |                           |                | how monitoring will be conducted to demonstrate compliance with the     |         |                                                                      |                                                             |                                                                       |
|         |                           |                | permit.                                                                 |         |                                                                      |                                                             |                                                                       |
|         |                           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | Monitor and record hours of operationg                               | Record keeping                                              |                                                                       |
|         |                           |                | how monitoring will be conducted to demonstrate compliance with the     |         |                                                                      |                                                             |                                                                       |
|         |                           |                | permit.                                                                 |         |                                                                      |                                                             |                                                                       |
|         |                           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate      | Yes     | Monitor and record hours of operationg                               | Record keeping                                              |                                                                       |
|         |                           |                | how monitoring will be conducted to demonstrate compliance with the     |         |                                                                      |                                                             |                                                                       |
|         |                           | CO2 Equivalant | Fill out the Additional Notes for Monitoring column to domonstrate      | Ves     | Monitoring for CO2e is achieved by monitoring for CO2. CH4, and      | Record keeping                                              |                                                                       |
|         |                           |                | how monitoring will be conducted to demonstrate compliance with the     | 105     | N2O                                                                  |                                                             |                                                                       |
|         |                           |                | permit.                                                                 |         |                                                                      |                                                             |                                                                       |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |
|         |                           |                |                                                                         |         |                                                                      |                                                             |                                                                       |

| FIN      | Unit Type                 | Pollutant      | Minimum Monitoring Requirements                                                                                                                      | Confirm | Additional Notes for Monitoring                                      | Proposed Measurement Technique (only com<br>pollutants with a project increase above the I |
|----------|---------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| FW-PUMP2 | Engine: Emergency, Diesel | VOC            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | NOx            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | CO             | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | РМ             | The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Monitor and record hours of operation                        | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | SO2            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      |                                                                                            |
|          |                           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O. | Record keeping                                                                             |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
| FW-PUMP3 | Engine: Emergency, Diesel | VOC            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | NOx            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | CO             | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | PM             | The emission monitoring techniques for PM10 and PM2.5 will follow the technique for PM. Monitor and record hours of operation                        | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | SO2            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      |                                                                                            |
|          |                           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O. | Record keeping                                                                             |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
| EG-1     | Engine: Emergency, Diesel | VOC            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | NOx            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | CO             | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | РМ             | The emission monitoring techniques for PM10 and PM2.5 will follow<br>the technique for PM. Monitor and record hours of operation                     | Yes     |                                                                      | Record keeping                                                                             |
|          |                           | 502            | Monitor and record hours of operation                                                                                                                | Yes     |                                                                      |                                                                                            |
|          |                           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitor and record hours of operationg                               | Record keeping                                                                             |
|          |                           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O. | Record keeping                                                                             |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |
|          |                           |                |                                                                                                                                                      |         |                                                                      |                                                                                            |

| olete for     | Additional Notes for Measuring |
|---------------|--------------------------------|
| SD threshold) |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |

| FIN  | Unit Type                 | Pollutant      | Minimum Monitoring Requirements                                     | Confirm | Additional Notes for Monitoring                                 | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring |
|------|---------------------------|----------------|---------------------------------------------------------------------|---------|-----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|
|      |                           |                |                                                                     |         |                                                                 | pollutants with a project increase above the PSD threshold) |                                |
| EG-2 | Engine: Emergency, Diesel | VOC            | Monitor and record hours of operation                               | Yes     |                                                                 | Record keeping                                              |                                |
|      |                           | NOx            | Monitor and record hours of operation                               | Yes     |                                                                 | Record keeping                                              |                                |
|      |                           | CO             | Monitor and record hours of operation                               | Yes     |                                                                 | Record keeping                                              |                                |
|      |                           | РМ             | The emission monitoring techniques for PM10 and PM2.5 will follow   | Yes     |                                                                 | Record keeping                                              |                                |
|      |                           |                |                                                                     |         |                                                                 |                                                             |                                |
|      |                           | SO2            | Monitor and record hours of operation                               | Yes     |                                                                 |                                                             |                                |
|      |                           | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate  | Yes     | Monitor and record hours of operationg                          | Record keeping                                              |                                |
|      |                           |                | how monitoring will be conducted to demonstrate compliance with the |         |                                                                 |                                                             |                                |
|      |                           |                | permit.                                                             |         |                                                                 |                                                             |                                |
|      |                           | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate  | Yes     | Monitor and record hours of operationg                          | Record keeping                                              |                                |
|      |                           |                | how monitoring will be conducted to demonstrate compliance with the |         |                                                                 |                                                             |                                |
| -    |                           | N2O            | Fill out the Additional Notes for Manitoring column to demonstrate  | Vec     | Monitor and record hours of operations                          | Pecord keeping                                              |                                |
|      |                           | 1120           | how monitoring will be conducted to demonstrate compliance with the | 105     |                                                                 |                                                             |                                |
|      |                           |                | permit.                                                             |         |                                                                 |                                                             |                                |
|      |                           | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate  | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and | Record keeping                                              |                                |
|      |                           |                | how monitoring will be conducted to demonstrate compliance with the |         | N2O.                                                            |                                                             |                                |
|      |                           |                | permit.                                                             |         |                                                                 |                                                             |                                |
|      |                           |                |                                                                     |         |                                                                 |                                                             |                                |
|      |                           |                |                                                                     |         |                                                                 |                                                             |                                |
|      |                           |                |                                                                     |         |                                                                 |                                                             |                                |
|      |                           |                |                                                                     |         |                                                                 |                                                             |                                |

| FIN  | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               | pollutants with a project increase above the PSD threshold) | , and the second s |
| FL-1 | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | SO2            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate how monitoring will be conducted to demonstrate compliance with the permit.                                                                                                                                                                                       | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| FIN      | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for nollutants with a project increase above the PSD threshold) | Additional Notes for Measuring                                                                                                                                                                                       |
|----------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FL-1SUSD | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | NH3            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|          |                | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. |                                                                                                               |                                                                                                                                                                                                                      |
|          |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |

| FIN  | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               | pollutants with a project increase above the PSD threshold) | , and the second s |
| FL-2 | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | SO2            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate how monitoring will be conducted to demonstrate compliance with the permit.                                                                                                                                                                                       | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| FIN      | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                                                                                                                                                                             |
|----------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               | pollutants with a project increase above the PSD threshold) |                                                                                                                                                                                                                            |
| FL-2SUSD | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu<br>content monitored continuously (measured at the instrument's capability or<br>every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.       |
|          |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.       |
|          |                | NH3            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                            |
|          |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.       |
|          |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.       |
|          |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.       |
|          |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.       |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                            |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                            |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                            |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                            |

| FIN  | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               | pollutants with a project increase above the PSD threshold) | , and the second s |
| FL-3 | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | SO2            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| FIN      | Unit Type      | Pollutant | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               | pollutants with a project increase above the PSD threshold) | , and the second s |
| FL-3SUSD | Control: Flare | NOx       | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                | NH3       | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                |           |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| FIN  | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for           | Additional Notes for Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               | pollutants with a project increase above the PSD threshold) | , and the second s |
| FL-4 | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | SO2            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                              | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| FIN      | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for pollutants with a project increase above the PSD threshold) | Additional Notes for Measuring                                                                                                                                                                                       |
|----------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FL-4SUSD | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | NH3            | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|          |                | HAPs           | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. |                                                                                                               |                                                                                                                                                                                                                      |
|          |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|          |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |

| FIN  | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for pollutants with a project increase above the PSD threshold) | Additional Notes for Measuring                                                                                                                                                                                       |
|------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FL-5 | Control: Flare | VOC            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|      |                | NOx            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|      |                | со             | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|      |                | SO2            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|      |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|      |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|      |                | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|      |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                                                                                | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |
|      |                |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                                      |

| FIN      | Unit Type                                        | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                               | Proposed Measurement Technique (only complete for<br>pollutants with a project increase above the PSD threshold) | Additional Notes for Measuring                                                                                                                                                                                       |
|----------|--------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FL-5SUSD | Control: Flare                                   | VOC            | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                   | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                                                  | NOx            | Pilot flame presence monitored continuously. Waste gas flow and<br>composition monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. A Btu analyzer may be substituted for the<br>composition analyzer where the composition is understood. | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                   | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                                                  | со             | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                   | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                                                  | NH3            | Pilot flame presence monitored continuously. Waste gas flow and composition monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. A Btu analyzer may be substituted for the composition analyzer where the composition is understood.             | Yes     |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                   | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                                                  | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                   | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                                                  | N2O            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Pilot flame presence monitored continuously. Waste gas flow and<br>Btu content monitored continuously (measured at the instrument's<br>capability or every 15 minutes, which ever is less), with hourly<br>averages recorded. | Record keeping                                                                                                   | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                                                  | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                 | Yes     | Monitoring for CO2e is achieved by monitoring for CO2, CH4, and N2O.                                                                                                                                                          | Record keeping                                                                                                   | Pilot flame presence monitored continuously. Waste gas flow and Btu content monitored continuously (measured at the instrument's capability or every 15 minutes, which ever is less), with hourly averages recorded. |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          | Otomore Tank (1): Finad reaf                     | Voc            | Changed masterial and throughout                                                                                                                                                                                                                                                                                                     | N/aa    |                                                                                                                                                                                                                               | Decod lossing                                                                                                    |                                                                                                                                                                                                                      |
| 114-1    | with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC            |                                                                                                                                                                                                                                                                                                                                      | res     |                                                                                                                                                                                                                               | Record Reeping                                                                                                   |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |
|          |                                                  |                |                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                                                                                                                      |

| FIN   | Unit Type                                                                        | Pollutant | Minimum Monitoring Requirements | Confirm | Additional Notes for Monitoring | Proposed Measurement Technique (only com<br>pollutants with a project increase above the F |
|-------|----------------------------------------------------------------------------------|-----------|---------------------------------|---------|---------------------------------|--------------------------------------------------------------------------------------------|
| TK-2  | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
| TK-3A | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 |         |                                 |                                                                                            |
|       |                                                                                  |           |                                 | N./     |                                 | Decend keeping                                                                             |
| TK-3B | Storade Lank (1): Fixed root                                                     | VOC       | Stored material and throughout  | VAC     |                                 |                                                                                            |
| ТК-ЗВ | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | Voc       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 |                                                                                            |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 |                                                                                            |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 |                                                                                            |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 |                                                                                            |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 |                                                                                            |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 |                                                                                            |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | Voc       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| ТК-3В | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| TK-3B | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia |           | Stored material and throughput  | Yes     |                                 | Record keeping                                                                             |
| ТК-3В | Storage Tank (1): Fixed root<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 |                                                                                            |
| TK-3B | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput  | Yes     |                                 |                                                                                            |

| plete for     | Additional Notes for Measuring |
|---------------|--------------------------------|
| SD threshold) |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |

| FIN    | Unit Type                                                                        | Pollutant | Minimum Monitoring Requirements                                                                                                                      | Confirm | Additional Notes for Monitoring                | Proposed Measurement Technique (only com<br>pollutants with a project increase above the P |
|--------|----------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|--------------------------------------------------------------------------------------------|
| ТК-4В  | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput                                                                                                                       | Yes     |                                                | Record keeping                                                                             |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
| ТК-5А  | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput                                                                                                                       | Yes     |                                                | Record keeping                                                                             |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
| TK-5B  | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput                                                                                                                       | Yes     |                                                | Record keeping                                                                             |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
| TK-WW1 | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput                                                                                                                       | Yes     |                                                | Record keeping                                                                             |
|        |                                                                                  | NH3       | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Keep records of stored material and throughput |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |

| plete for     | Additional Notes for Measuring |
|---------------|--------------------------------|
| SD threshold) |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |

| FIN    | Unit Type                                                                        | Pollutant | Minimum Monitoring Requirements                                                                                                                      | Confirm | Additional Notes for Monitoring                | Proposed Measurement Technique (only com<br>pollutants with a project increase above the F |
|--------|----------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|--------------------------------------------------------------------------------------------|
| TK-WW2 | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput                                                                                                                       | Yes     |                                                | Record keeping                                                                             |
|        |                                                                                  | NH3       | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Keep records of stored material and throughput |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  | 1/0.0     |                                                                                                                                                      | N (     |                                                |                                                                                            |
| TK-WW3 | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput                                                                                                                       | Yes     |                                                | Record keeping                                                                             |
|        |                                                                                  | NH3       | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Keep records of stored material and throughput |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        | -                                                                                |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
| TK-SW1 | Storage Tank (1): Fixed roof<br>with capacity < 25,000 gal or<br>TVP < 0.50 psia | VOC       | Stored material and throughput                                                                                                                       | Yes     |                                                | Record keeping                                                                             |
|        |                                                                                  | NH3       | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Keep records of stored material and throughput |                                                                                            |
|        | -                                                                                |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |
|        |                                                                                  |           |                                                                                                                                                      |         |                                                |                                                                                            |

| plete for<br>SD threshold) | Additional Notes for Measuring |
|----------------------------|--------------------------------|
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |

| FIN      | Unit Type    | Pollutant      | Minimum Monitoring Requirements                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                                                                            | Proposed Measurement Technique (only con<br>pollutants with a project increase above the I |
|----------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| VTCO2-1  | Process Vent | со             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track hours of operation, calculate emissions monthly according to the PTE calculation methodology on a rolling 12-month basis                                                                                             | Record keeping                                                                             |
|          |              | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track hours of operation, calculate emissions monthly according to the PTE calculation methodology on a rolling 12-month basis                                                                                             | Record keeping                                                                             |
|          |              | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track hours of operation, calculate emissions monthly according to the PTE calculation methodology on a rolling 12-month basis                                                                                             | Record keeping                                                                             |
|          |              | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 and CH4.                                                                                                                                                             | Record keeping                                                                             |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
| VTCO2-2P | Process Vent | CO             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track days in operation after startup (not to exceed 180 days),<br>calculate emissions monthly according to the PTE calculation<br>methodology on a rolling 12-month basis                                                 | Record keeping                                                                             |
|          |              | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track days in operation after startup (not to exceed 180 days),<br>calculate emissions monthly according to the PTE calculation<br>methodology on a rolling 12-month basis                                                 | Record keeping                                                                             |
|          |              | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track days in operation after startup (not to exceed 180 days),<br>calculate emissions monthly according to the PTE calculation<br>methodology on a rolling 12-month basis                                                 | Record keeping                                                                             |
|          |              | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 and CH4.                                                                                                                                                             | Record keeping                                                                             |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          | Durana Mart  | 22             | Fill and the Addition of New York and the important terms for the                                                                                    |         |                                                                                                                                                                                                                            | Decembra series                                                                            |
| VICO2-2  | Process Vent | 0              | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Reep records of the frequency and duration (in hours) of each startup<br>and third-party CCS maintenance event, calculate emissions monthly<br>according to the PTE calculation methodology on a rolling 12-month<br>basis | Record keeping                                                                             |
|          |              | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Keep records of the frequency and duration (in hours) of each startup<br>and third-party CCS maintenance event, calculate emissions monthly<br>according to the PTE calculation methodology on a rolling 12-month<br>basis | Record keeping                                                                             |
|          |              | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Keep records of the frequency and duration (in hours) of each startup<br>and third-party CCS maintenance event, calculate emissions monthly<br>according to the PTE calculation methodology on a rolling 12-month<br>basis | Record keeping                                                                             |
|          |              | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 and CH4.                                                                                                                                                             | Record keeping                                                                             |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                                                                            |                                                                                            |

| plete for     | Additional Notes for Measuring |
|---------------|--------------------------------|
| SD threshold) |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |
|               |                                |

| FIN      | Unit Type    | Pollutant      | Minimum Monitoring Requirements                                                                                                                      | Confirm | Additional Notes for Monitoring                                                                                                                                            | Proposed Measurement Technique (only com       |
|----------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            | pollutants with a project increase above the F |
| VTCO2-3  | Process Vent | со             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track hours of operation, calculate emissions monthly according to the PTE calculation methodology on a rolling 12-month basis                                             | Record keeping                                 |
|          |              | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track hours of operation, calculate emissions monthly according to the PTE calculation methodology on a rolling 12-month basis                                             | Record keeping                                 |
|          |              | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track hours of operation, calculate emissions monthly according to the PTE calculation methodology on a rolling 12-month basis                                             | Record keeping                                 |
|          |              | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 and CH4.                                                                                                             | Record keeping                                 |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
| VTCO2-4P | Process Vent | со             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track days in operation after startup (not to exceed 180 days),<br>calculate emissions monthly according to the PTE calculation<br>methodology on a rolling 12-month basis | Record keeping                                 |
|          |              | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track days in operation after startup (not to exceed 180 days),<br>calculate emissions monthly according to the PTE calculation<br>methodology on a rolling 12-month basis | Record keeping                                 |
|          |              | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Track days in operation after startup (not to exceed 180 days),<br>calculate emissions monthly according to the PTE calculation<br>methodology on a rolling 12-month basis | Record keeping                                 |
|          |              | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit. | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 and CH4.                                                                                                             | Record keeping                                 |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |
|          |              |                |                                                                                                                                                      |         |                                                                                                                                                                            |                                                |

| plete for<br>SD threshold) | Additional Notes for Measuring |
|----------------------------|--------------------------------|
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |
|                            |                                |

| FIN     | Unit Type      | Pollutant      | Minimum Monitoring Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Confirm | Additional Notes for Monitoring                                                                                                                                                                                            | Proposed Measurement Technique (only com<br>pollutants with a project increase above the R |
|---------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| VTCO2-4 | Process Vent   | со             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Keep records of the frequency and duration (in hours) of each startup<br>and third-party CCS maintenance event, calculate emissions monthly<br>according to the PTE calculation methodology on a rolling 12-month<br>basis | Record keeping                                                                             |
|         |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Keep records of the frequency and duration (in hours) of each startup<br>and third-party CCS maintenance event, calculate emissions monthly<br>according to the PTE calculation methodology on a rolling 12-month<br>basis | Record keeping                                                                             |
|         |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Keep records of the frequency and duration (in hours) of each startup<br>and third-party CCS maintenance event, calculate emissions monthly<br>according to the PTE calculation methodology on a rolling 12-month<br>basis | Record keeping                                                                             |
|         |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 and CH4.                                                                                                                                                             | Record keeping                                                                             |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         | Equipment Leak |                | compressors, agitator and valve seals on piping components in light<br>liquid and gas VOC service quarterly. Gas or hydraulic check new<br>and replaced connectors prior to returning to service, or monitor with<br>Method 21 within 15 days of returning to service. Leak detection and<br>repair (LDAR) Program 28M has a leak definition where repair action<br>is required at 10,000 ppmv. LDAR Program 28 VHP has a leak<br>definition where repair action is required at 500 ppmv for valves and<br>connectors and 2000 ppmv for pumps, compressors and agitators.<br>Check connectors weekly using audio, visual or olfactory (AVO)<br>senses to observe leaks. Record results and corrective action taken. |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                | со             | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Monitored using 28VHP and 28CNTQ.<br>Leak detection level = 500 ppmv VOC.                                                                                                                                                  | Other:                                                                                     |
|         |                | NH3            | Look for leaks twice per shift using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes     |                                                                                                                                                                                                                            |                                                                                            |
|         |                | H2S            | Look for leaks twice per shift using audio, visual or olfactory (AVO) senses to observe leaks. Record results and corrective action taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes     |                                                                                                                                                                                                                            |                                                                                            |
|         |                | CO2            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Monitored using 28VHP and 28CNTQ.<br>Leak detection level = 500 ppmv VOC.                                                                                                                                                  |                                                                                            |
|         |                | CH4            | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Monitored using 28VHP and 28CNTQ.<br>Leak detection level = 500 ppmv VOC.                                                                                                                                                  |                                                                                            |
|         |                | CO2 Equivalent | Fill out the Additional Notes for Monitoring column to demonstrate<br>how monitoring will be conducted to demonstrate compliance with the<br>permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | Monitoring for CO2e is achieved by monitoring for CO2 and CH4.                                                                                                                                                             | Other:                                                                                     |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |
|         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                                                                                                                                                                                            |                                                                                            |

| plete for<br>SD threshold) | Additional Notes for Measuring                                            |
|----------------------------|---------------------------------------------------------------------------|
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            | Monitored using 28VHP and 28CNTQ.                                         |
|                            | Leak detection level = 500 ppmv VOC.                                      |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            | Monitored using 28VHP and 28CNTQ.<br>Leak detection level = 500 ppmv VOC. |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |
|                            | Monitored using 28VHP and 28CNTQ.<br>Leak detection level = 500 ppmv VOC. |
|                            |                                                                           |
|                            |                                                                           |
|                            |                                                                           |

#### Texas Commission on Environmental Quality Form PI-1 General Application Materials Company:

Company: Ingleside Clean Ammonia Partners, LLC

| Item                                                                              | How submitted  | Date submitted |
|-----------------------------------------------------------------------------------|----------------|----------------|
| A. Administrative Information                                                     |                |                |
| Form PI-1 General Application                                                     | STEERS         | 10/12/2023     |
| Hard copy of the General sheet with original (ink) signature                      | STEERS         | 10/12/2023     |
| Professional Engineer Seal                                                        | STEERS         | 10/12/2023     |
| B. General Information                                                            |                |                |
| Copy of current permit (both Special Conditions and MAERT)                        |                |                |
| Core Data Form                                                                    | Not applicable |                |
| Area map                                                                          | STEERS         | 10/12/2023     |
| Plot plan                                                                         | STEERS         | 10/12/2023     |
| Process description                                                               | STEERS         | 10/12/2023     |
| Process flow diagram                                                              | STEERS         | 10/12/2023     |
| List of MSS activities                                                            | STEERS         | 10/12/2023     |
| State regulatory requirements discussion                                          | STEERS         | 10/12/2023     |
| C. Federal Applicability (see step 6 of Federal Applicability sheet instructions) |                |                |
| Project emission increase determination - Table 2F                                | Not applicable |                |
| Netting analysis (if applicable) - Tables 3F and 4F                               |                |                |
| D. Technical Information                                                          |                |                |
| BACT discussion, if additional details are attached                               | STEERS         | 10/12/2023     |
| Monitoring information, if additional details are attached                        | STEERS         | 10/12/2023     |
| Material Balance (if applicable)                                                  |                |                |
| Calculations                                                                      | STEERS         | 10/12/2023     |
| E. Impacts Analysis                                                               |                |                |
| Qualitative impacts analysis                                                      |                |                |
| MERA analysis                                                                     | STEERS         | 10/12/2023     |
| EMEW: SCREEN3                                                                     | Not applicable |                |
| EMEW: NonSCREEN3                                                                  | STEERS         | 10/12/2023     |
| PSD modeling protocol                                                             | STEERS         | 10/12/2023     |
| F. Additional Attachments                                                         |                |                |
|                                                                                   |                |                |
|                                                                                   |                |                |
|                                                                                   |                |                |
|                                                                                   |                |                |
|                                                                                   |                |                |
|                                                                                   |                |                |
|                                                                                   |                |                |

# APPENDIX B AREA MAP AND PLOT PLAN





Z:\PROJECTS\Enbridge\ENB2022-0055 EIEC H2 and NH3 Prod Air Permitting\GIS\Maps\Figure B-2 Plot Plan.mxd

### Authorizations for EPNs in Plot Plan

|          | EPN     | Authorization                                                   |
|----------|---------|-----------------------------------------------------------------|
| BLR-AUX1 | H-591   | _                                                               |
| CTWR1    | TK-1    | _                                                               |
| CTWR2    | TK-2    | _                                                               |
| EG-1     | ТК-ЗА   |                                                                 |
| EG-2     | ТК-ЗВ   | _                                                               |
| FL-1     | TK-4A   | _                                                               |
| FL-2     | TK-4B   |                                                                 |
| FL-3     | TK-5A   |                                                                 |
| FL-4     | ТК-5В   | These EPNs will be authorized by this permit upon its issuance. |
| FL-5     | TK-SW1  |                                                                 |
| FUG      | TK-WW1  | _                                                               |
| FW-PUMP1 | TK-WW2  |                                                                 |
| FW-PUMP2 | TK-WW3  |                                                                 |
| FW-PUMP3 | VTCO2-1 |                                                                 |
| H-201    | VTCO2-2 | _                                                               |
| H-203    | VTCO2-3 | _                                                               |
| H-590    | VTCO2-4 | _                                                               |

## APPENDIX C PROCESS FLOW DIAGRAMS





## APPENDIX D

TCEQ EXPEDITED PERMITTING FORMS, PUBLIC INVOLVEMENT PLAN, AND PLAIN LANGUAGE SUMMARIES

#### Air Permit Division Air Permit Support (APD-APS) Air Permitting Surcharge Payment Texas Commission on Environmental Quality

| I. Contact Information                                                      |
|-----------------------------------------------------------------------------|
| Company or Other Legal Customer Name: Ingleside Clean Ammonia Partners, LLC |
| Customer Reference Number (CN): TBD                                         |
| Regulated Entity Number (RN): TBD                                           |
| Company Official or Technical Contact Information                           |
| Mr. Mrs. Ms. Dr. Other:                                                     |
| Name: Clayton Curtis                                                        |
| Title: Director Regulatory Compliance USGC Terminals                        |
| Mailing Address: 915 North Eldridge Parkway, Suite 1100                     |
| City: Houston                                                               |
| State: Texas                                                                |
| ZIP Code: 77079                                                             |
| Telephone Number: 713-627-5400                                              |
| E-mail Address: clayton.curtis@enbridge.com                                 |
| II. Project Information                                                     |
| Facility Name: Ingleside Blue Ammonia                                       |
| Permit Number: NA                                                           |
| Project Number: NA                                                          |
| III. Surcharge Payment                                                      |
| Project Type: Federal NSR Permit                                            |
| Fee Amount: \$ 20,000                                                       |
| Check, Money Order, Transaction Number, and/or ePay Voucher Number: (below) |
| Paid via ePay                                                               |
| Paid Online: XES NO                                                         |
| Company Name on Check: Paid via ePay                                        |

### Form APD-EXP Expedited Permitting Request

| I. Contact Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company or Other Legal Customer Name: Ingleside Clean Ammonia Partners, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Customer Reference Number (CN): TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Regulated Entity Number (RN): TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Company Official or Technical Contact Name: Mr. Clayton Curtis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phone Number: 713-627-5400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Email: clayton.curtis@enbridge.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| II. Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Facility Type: Ingleside Blue Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Permit Number: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Project Number: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| III. Economic Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The purpose of the application associated with this request to expedite will benefit the economy of this state or an area of this state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IV. Delinquent Fees and Penalties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Applications will not be expedited if any delinquent fees and/or penalties are owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at: www.tceq.texas.gov/agency/delin/index.html.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V. Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. As the applicant, I commit to fulfilling all expectations of the expedited permitting program and application requirements promptly. Failure to meet any expectation or requirement may cause my application to be removed from the expedited permitting program and possibly voided at the discretion of the TCEQ Executive Director. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties. |
| Name: Clayton Curtis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signature: Signed in STEERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Reset Form



<sup>7</sup> Texas Commission on Environmental Quality

### Public Involvement Plan Form for Permit and Registration Applications

The Public Involvement Plan is intended to provide applicants and the agency with information about how public outreach will be accomplished for certain types of applications in certain geographical areas of the state. It is intended to apply to new activities; major changes at existing plants, facilities, and processes; and to activities which are likely to have significant interest from the public. This preliminary screening is designed to identify applications that will benefit from an initial assessment of the need for enhanced public outreach.

All applicable sections of this form should be completed and submitted with the permit or registration application. For instructions on how to complete this form, see TCEQ-20960-inst.

#### Section 1. Preliminary Screening

New Permit or Registration Application

New Activity – modification, registration, amendment, facility, etc. (see instructions)

If neither of the above boxes are checked, completion of the form is not required and does not need to be submitted.

#### Section 2. Secondary Screening

Requires public notice,

Considered to have significant public interest, and

Located within any of the following geographical locations:

- Austin
- Dallas
- Fort Worth
- Houston
- San Antonio
- West Texas
- Texas Panhandle
- Along the Texas/Mexico Border
- Other geographical locations should be decided on a case-by-case basis

#### If all the above boxes are not checked, a Public Involvement Plan is not necessary. Stop after Section 2 and submit the form.

Public Involvement Plan not applicable to this application. Provide **brief** explanation.

Although we will be subject to Chapter 39 public notice requirements, we are electing to also provide additional stakeholder involvement activities with this public involvement plan.

| Section 3. Application Information                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of Application (check all that apply):                                                                                                                        |
| $\Delta ir \qquad $                         |
|                                                                                                                                                                    |
| Waste       Municipal Solid Waste       Industrial and Hazardous Waste       Scrap Tire         Radioactive Material Licensing       Underground Injection Control |
| Water Quality                                                                                                                                                      |
| Texas Pollutant Discharge Elimination System (TPDES)                                                                                                               |
| Texas Land Application Permit (TLAP)                                                                                                                               |
| State Only Concentrated Animal Feeding Operation (CAFO)                                                                                                            |
| Water Treatment Plant Residuals Disposal Permit                                                                                                                    |
| Class B Biosolids Land Application Permit                                                                                                                          |
| Domestic Septage Land Application Registration                                                                                                                     |
|                                                                                                                                                                    |
| Water Rights New Permit                                                                                                                                            |
| New Appropriation of Water                                                                                                                                         |
| New or existing reservoir                                                                                                                                          |
|                                                                                                                                                                    |
| Amendment to an Existing Water Right                                                                                                                               |
| Add a New Appropriation of Water                                                                                                                                   |
| Add a New or Existing Reservoir                                                                                                                                    |
| Major Amendment that could affect other water rights or the environment                                                                                            |
|                                                                                                                                                                    |
| Section 4. Plain Language Summary                                                                                                                                  |
| Provide a brief description of planned activities.                                                                                                                 |

See attached Plain Language Summaries in English and Spanish

| Section 5. Community and Demographic Information                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Community information can be found using EPA's EJ Screen, U.S. Census Bureau information, or generally available demographic tools.                                               |
| Information gathered in this section can assist with the determination of whether alternative language notice is necessary. Please provide the following information.             |
| Ingleside                                                                                                                                                                         |
| (City)                                                                                                                                                                            |
| San Patricio                                                                                                                                                                      |
| (County)                                                                                                                                                                          |
| 103.02                                                                                                                                                                            |
|                                                                                                                                                                                   |
| (Census Tract)<br>Please indicate which of these three is the level used for gathering the following information.                                                                 |
| (a) Percent of people over 25 years of age who at least graduated from high school                                                                                                |
| 88%                                                                                                                                                                               |
|                                                                                                                                                                                   |
| (b) Per capita income for population near the specified location                                                                                                                  |
| \$31,168                                                                                                                                                                          |
|                                                                                                                                                                                   |
| (c) Percent of minority population and percent of population by race within the specified location                                                                                |
| People of color: 58%; Black: 3%, Hispanic: 52%, Hawaiian/Pacific Islander: 1%                                                                                                     |
|                                                                                                                                                                                   |
| (d) Percent of Linguistically Isolated Households by language within the specified location                                                                                       |
| 5% of total households; Spanish: 60%, Other Indo-European Languages: 40%                                                                                                          |
|                                                                                                                                                                                   |
| (e) Languages commonly spoken in area by percentage                                                                                                                               |
| English 72%, Spanish 26%, German or other West Germanic 1%, Other Indo-European 1%                                                                                                |
| (f) Community and/or Stakeholder Groups                                                                                                                                           |
| Groups may include one or more of the following: Ingleside on the Bay community, City of Ingleside,<br>San Patricio County, Nueces County, Corpus Christi, Port of Corpus Christi |
| (g) Historic public interest or involvement                                                                                                                                       |
| ICAP is aware of prior interest in neighboring projects undertaken by others and will work with the community and stakeholder groups throughout this permitting process.          |
| Section 6. Planned Public Outreach Activities                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(a) Is this application subject to the public participation requirements of Title 30 Texas</li> <li>Administrative Code (30 TAC) Chapter 39?</li> <li>Yes No</li> </ul>                                             |
| (b) If yes, do you intend at this time to provide public outreach other than what is required by rule?<br>Yes No                                                                                                             |
| If Yes, please describe.                                                                                                                                                                                                     |
| Mailed information ("fact sheet"), periodic stakeholder meetings in English and Spanish                                                                                                                                      |
| If you answered "yes" that this application is subject to 30 TAC Chapter 39,<br>answering the remaining questions in Section 6 is not required.<br>(c) Will you provide notice of this application in alternative languages? |
| Yes No                                                                                                                                                                                                                       |
| Please refer to Section 5. If more than 5% of the population potentially affected by your application is Limited English Proficient, then you are required to provide notice in the alternative language.                    |
| If yes, how will you provide notice in alternative languages?                                                                                                                                                                |
| Publish in alternative language newspaper                                                                                                                                                                                    |
| Posted on Commissioner's Integrated Database Website                                                                                                                                                                         |
| Mailed by TCEQ's Office of the Chief Clerk                                                                                                                                                                                   |
| Other (specify)                                                                                                                                                                                                              |
| (d) Is there an opportunity for some type of public meeting, including after notice?                                                                                                                                         |
| (e) If a public meeting is held, will a translator be provided if requested?                                                                                                                                                 |
| Yes No                                                                                                                                                                                                                       |
| (f) Hard copies of the application will be available at the following (check all that apply):                                                                                                                                |
| TCEQ Regional Office TCEQ Central Office                                                                                                                                                                                     |
| Public Place (specify)                                                                                                                                                                                                       |
|                                                                                                                                                                                                                              |
| Section 7. Voluntary Submittal                                                                                                                                                                                               |
| For applicants voluntarily providing this Public Involvement Plan, who are not subject to formal public participation requirements.                                                                                          |
| Will you provide notice of this application, including notice in alternative languages?<br>Yes No<br>What types of notice will be provided?                                                                                  |
| Nublich in alternative language newspaper                                                                                                                                                                                    |
|                                                                                                                                                                                                                              |
| Posteu on Commissioner's integrated Database website                                                                                                                                                                         |
| Mailed by TCEQ's Office of the Chief Clerk                                                                                                                                                                                   |
| Other (specify)                                                                                                                                                                                                              |

## Plain Language Summary for New Source Review (NSR) Initial Application

All air permit applications subject to the public notice requirements of 30 Texas Administrative Code (TAC) Chapter 39 must prepare and submit to the TCEQ a plain-language summary of the application. The summary must be provided in English and the alternative language as required by 30 TAC § 39.426, if applicable.

Ingleside Clean Ammonia Partners, LLC (CN TBD) has submitted an application for an initial permit. The Ingleside Blue Ammonia (RN TBD) plant will produce/manufacture blue ammonia at 1450 Lexington Blvd, Ingleside, San Patricio County. Producing blue ammonia is a low-carbon alternative to traditional ammonia manufacturing methods. Blue ammonia utilizes carbon dioxide (CO<sub>2</sub>) capture, permanent sequestration, and storage technologies.

This permit will authorize two blue ammonia production trains, which will include gas-fired boilers and process heaters, hydrogen production and ammonia synthesis equipment, cooling towers, sulfur removal equipment, atmospheric storage tanks, refrigerated ammonia storage tanks, flares (control devices), wastewater treatment facilities, emergency engines (fire water pumps and generators), and fugitive components (e.g., pumps, valves, connectors, flanges). The two trains each will have the capacity to produce 4,000 metric tons per day of blue ammonia, which will use sweet natural gas as the raw material.

Ingleside Clean Ammonia Partners, LLC has listed in the application the pollutants and amounts that will be emitted for each facility. Below is the total amount for each pollutant that is proposed to be emitted each year for all the facilities.

| Pollutant                                                     | Proposed Emissions (tons per year) |
|---------------------------------------------------------------|------------------------------------|
| Volatile Organic Compounds (VOC)                              | 33.22                              |
| Oxides of Nitrogen (NO <sub>x</sub> )                         | 90.13                              |
| Carbon Monoxide (CO)                                          | 216.97                             |
| Particulate Matter (PM)                                       | 183.71                             |
| PM less than 10 Micrometers in Diameter ( $PM_{10}$ )         | 13.09                              |
| PM less than 2.5 Micrometers in Diameter (PM <sub>2.5</sub> ) | 12.37                              |
| Sulfur Dioxide (SO <sub>2</sub> )                             | 3.86                               |
| Hydrogen Sulfide (H <sub>2</sub> S)                           | 0.87                               |
| Ammonia (NH₃)                                                 | 66.27                              |
| Hazardous Air Pollutants (HAP)                                | 8.73                               |
| CO <sub>2</sub> Equivalents (CO <sub>2</sub> e)               | 3,376,116.96                       |

The new facilities will be controlled by the following equipment:

- <u>Cooling towers</u> use of "drift eliminators," which reduce the amount of water that leaves the top of the cooling towers as mist. The mist can contain dissolved solids, which would become particulate matter when the water evaporates, leaving only the solids behind. The drift eliminators reduce the solids emitted from the cooling towers.
- <u>Auxiliary boiler (for steam generation)</u> use best available low NO<sub>X</sub> combustion/control technologies which may include one or more of the following: low-NO<sub>X</sub> burners, flue gas recirculation, and/or postcombustion controls.

- <u>Sulfur removal equipment</u> use hydrogen to remove the sulfur from the feed stream by joining the hydrogen with the sulfur into a different molecule, followed by a catalyst (something to act like a sponge) to absorb this new sulfur molecule so that it is not released to the atmosphere.
- <u>Process heaters and steam superheaters</u> use selective catalytic reduction (SCR), which means that before being emitted, the exhaust gas is mixed with a catalyst (something to assist the reaction) and ammonia to cause a chemical reaction that produces cleaner emissions of mostly nitrogen and water.
- <u>Hydrogen production and ammonia synthesis equipment</u> process equipment such as reactors, separation columns, and other vessels do not routinely vent to atmosphere. During necessary but infrequent start-up, shutdown, or maintenance operations, these units will vent to the plant's flares, which are described below. Hydrogen production includes a step for removing CO<sub>2</sub>, which will vent to atmosphere during startup (larger stream, brief time) and routinely (smaller stream, continuous). There also may be venting to atmosphere of the CO<sub>2</sub> stream for periods when the third-party carbon capture and sequestration infrastructure is not available.
- <u>Flares (control devices)</u> used to control gases from the production trains during plant maintenance, start-ups and shutdowns, which are expected to be infrequent. Gases from the trains will be piped to the flares, which is where the gases will be burned to lower the amount of process pollutants going into the air.
- <u>Atmospheric storage tanks</u> Tanks will be painted white to assist in minimizing the temperature of the liquids inside, which will limit the amount of stored liquid that could turn into vapor. Liquids will also be added to the tank using a submerged-fill pipe, which means that the pipe used to fill the tank will add liquid to the tank below the liquid surface. This method of tank filling reduces splashing, so less liquid is exposed to air, which could turn into vapor and be emitted from the tank.
- <u>Refrigerated ammonia storage tanks</u> use a "boil-off gas" system (BOG), which will capture ammonia that has turned into gas, cool it, compress it from gas to liquid, then return it to the storage tank and prevent ammonia emissions. The tanks will be refrigerated to -28°F, below the boiling point of ammonia, and are double-walled to provide additional ammonia containment.
- <u>Wastewater treatment facilities</u> Wastewater from the site will be collected and treated in a series of storage and treatment vessels to remove pollutants before discharging the water. As part of this system, production area storm water from the beginning of a storm will be collected and treated along with the site's wastewater to remove chemicals that may have gotten into the storm water as it flowed through the plant.
- <u>Emergency engines (fire water pumps and generators)</u> use EPA-certified engines to keep emissions from the engines as low as practicable.
- <u>Fugitive components</u> to identify if there are leaks, or "fugitive emissions," from piping components such as valves, connectors, pumps, and similar equipment, several methods are used. For VOCs and GHGs, the project will conduct periodic instrument monitoring. Using a calibrated hand-held instrument, personnel will check for fugitive emissions by holding the device near each piping component to measure for potential leaks of materials that can be detected by such instruments, specifically organic materials. For ammonia, and as a backup for VOCs and GHGs, plant personnel will also conduct walkthroughs multiple times per day using instruments and observations to confirm the integrity of plant operations. Both of these methods are designed for early detection and repair of potential leaks, thus reducing the duration of such leaks, resulting in a reduced potential for emissions from this equipment.

## Resumen en Lenguaje Sencillo del Permiso Inicial de Revisión de Nuevas Fuentes Solicitud

El siguiente resumen se proporciona para esta solicitud de permiso de aire pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas, según lo dispuesto en el capítulo 39 del Código Administrativo de Texas. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no son representaciones federales ejecutables de la solicitud de permiso.

Ingleside Clean Ammonia Partners, LLC (CN TBD) ha presentado una solicitud de permiso inicial. La planta de Ingleside Blue Ammonia (RN TBD) producirá/fabricará amoníaco azul en 1450 Lexington Blvd, Ingleside, San Patricio County. La producción de amoníaco azul es una alternativa baja en carbono a los métodos tradicionales de fabricación de amoníaco. El amoníaco azul utiliza tecnologías de captura de dióxido de carbono (CO<sub>2</sub>), secuestro permanente y almacenamiento.

Este permiso autorizará dos trenes de producción de amoníaco azul, que incluirán calderas de gas y calentadores de proceso, equipos de producción y síntesis de amoníaco de hidrógeno, torres de enfriamiento, calderas, equipos de eliminación de azufre, calentadores, tanques de almacenamiento atmosférico, tanques de almacenamiento de amoníaco refrigerado, bengalas (dispositivos de control), instalaciones de tratamiento de aguas residuales, motores de emergencia (bombas y generadores de agua contra incendios) y componentes fugitivos (por ejemplo, bombas, válvulas, conectores, bridas). Los dos trenes tendrán cada uno la capacidad de producir 4,000 toneladas métricas por día de amoníaco azul, que utilizará gas natural dulce como materia prima.

Ingleside Clean Ammonia Partners, LLC ha enumerado en la solicitud los contaminantes y las cantidades que se emitirán para cada instalación. A continuación, se muestra la cantidad total por cada contaminante que se propone emitir cada año para todas las instalaciones.

| Los Contaminantes                                            | Cantidad Total Permitida (toneladas por año) |
|--------------------------------------------------------------|----------------------------------------------|
| Compuestos Orgánicos Volátiles (COV)                         | 33.22                                        |
| Oxido de Nitrógeno (NO <sub>x</sub> )                        | 90.13                                        |
| Monóxido de Carbono (CO)                                     | 216.97                                       |
| Materia Particular (MP)                                      | 183.71                                       |
| MP Menos de 10 Micrómetros de Diámetro (MP <sub>10</sub> )   | 13.09                                        |
| MP Menos de 2,5 Micrómetros de Diámetro (MP <sub>2.5</sub> ) | 12.37                                        |
| Dióxido de Azufre (SO <sub>2</sub> )                         | 3.86                                         |
| Sulfuro de Hidrógeno (H <sub>2</sub> S)                      | 0.87                                         |
| Amoníaco (NH <sub>3</sub> )                                  | 66.27                                        |
| Contaminantes Atmosféricos Peligrosos (CAP)                  | 8.73                                         |
| CO <sub>2</sub> Equivalentes (CO <sub>2</sub> e)             | 3,376,116.96                                 |

Las nuevas instalaciones estarán controladas por los siguientes equipos:

- <u>Torres de enfriamiento</u> uso de "eliminadores de deriva", que reducen la cantidad de agua que sale de la parte superior de las torres de enfriamiento como niebla. La niebla puede contener sólidos disueltos, que se convertirían en partículas cuando el agua se evapore, dejando solo los sólidos detrás. Los eliminadores de deriva reducen los sólidos emitidos por las torres de enfriamiento.
- <u>Caldera auxiliar (para generación de vapor)</u> utilice las mejores tecnologías disponibles de combustión/control de NO<sub>x</sub> bajo que pueden incluir uno o más de los siguientes: quemadores de bajo NO<sub>x</sub>, recirculación de gases de combustión y/o controles posteriores a la combustión.

- <u>Equipo de eliminación de azufre</u> Use hidrógeno para eliminar el azufre de la corriente de alimentación uniendo el hidrógeno con el azufre en una molécula diferente, seguido de un catalizador (algo que actúe como una esponja) para absorber esta nueva molécula de azufre para que no se libere a la atmósfera.
- <u>Calentadores de proceso y sobre calentadores de vapor</u> utilizan la reducción catalítica selectiva (SCR), lo que significa que antes de ser emitidos, los gases de escape se mezclan con un catalizador (algo para ayudar a la reacción) y amoníaco para causar una reacción química que produce emisiones más limpias de nitrógeno y agua.
- <u>Equipo de producción de hidrógeno y síntesis de amoníaco</u> los equipos de proceso como reactores, columnas de separación y otros recipientes no se ventilan rutinariamente a la atmósfera. Durante las operaciones de arranque, parada o mantenimiento necesarias, pero poco frecuentes, estas unidades ventilarán las llamaradas de la planta, que se describen a continuación. La producción de hidrógeno incluye un paso para eliminar el CO<sub>2</sub>, que se ventilará a la atmósfera durante el arranque (flujo más grande, breve tiempo) y rutinariamente (flujo más pequeño, continuo). También puede haber ventilación a la atmósfera de la corriente de CO<sub>2</sub> durante períodos en los que la infraestructura de captura y secuestro de carbono de terceros no está disponible.
- <u>Bengalas (dispositivos de control)</u> se utilizan para controlar los gases de los trenes de producción durante el mantenimiento de la planta, las puestas en marcha y las paradas, que se espera sean poco frecuentes. Los gases de los trenes se canalizarán a las bengalas, que es donde se quemarán los gases para reducir la cantidad de contaminantes de proceso que van al aire.
- <u>Tanques de almacenamiento atmosférico</u> los tanques se pintarán de blanco para ayudar a minimizar la temperatura de los líquidos en el interior, lo que limitará la cantidad de líquido almacenado que podría convertirse en vapor. Los líquidos también se agregarán al tanque utilizando una tubería de llenado sumergido, lo que significa que la tubería utilizada para llenar el tanque agregará líquido al tanque debajo de la superficie del líquido. Este método de llenado del tanque reduce las salpicaduras, por lo que se expone menos líquido al aire, que podría convertirse en vapor y ser emitido desde el tanque.
- <u>Tanques de almacenamiento de amoníaco refrigerado</u> use un sistema de "gas de ebullición" (BOG), que capturará el amoníaco que se ha convertido en gas, lo enfriará, lo comprimirá de gas a líquido, luego lo devolverá al tanque de almacenamiento y evitará las emisiones de amoníaco. Los tanques se refrigerarán a -28°F, por debajo del punto de ebullición del amoníaco, y tienen doble pared para proporcionar contención adicional de amoníaco.
- <u>Instalaciones de tratamiento de aguas residuales</u> Las aguas residuales del sitio se recogerán y tratarán en una serie de recipientes de almacenamiento y tratamiento para eliminar los contaminantes antes de descargar el agua. Como parte de este sistema, las aguas pluviales del área de producción desde el comienzo de una tormenta se recolectarán y tratarán junto con las aguas residuales del sitio para eliminar los productos químicos que puedan haber ingresado al agua de lluvia a medida que fluían a través de la planta.
- <u>Motores de emergencia (bombas de agua contra incendios y generadores)</u> use motores certificados por la EPA para mantener las emisiones de los motores lo más bajo posible.
- <u>Componentes fugitivos</u> para identificar si hay fugas o "emisiones fugitivas" de componentes de tuberías como válvulas, conectores, bombas y equipos similares, se utilizan varios métodos. Para los COV y GEI, el proyecto llevará a cabo un monitoreo periódico de los instrumentos. Usando un instrumento manual calibrado, el personal verificará las emisiones fugitivas sosteniendo el dispositivo cerca de cada componente de tubería para medir posibles fugas de materiales que puedan ser detectados por dichos instrumentos, específicamente materiales orgánicos. Para el amoníaco, y como respaldo para COV y GEI el personal de la planta también realizará recorridos varias veces al día utilizando instrumentos y observaciones para confirmar la integridad de las operaciones de la planta. Ambos métodos están diseñados para la detección temprana y la reparación de posibles fugas, reduciendo así la duración de dichas fugas, lo que resulta en un menor potencial de emisiones de este equipo.

# **EJScreen Community Report**

This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

## Ingleside, TX



## LANGUAGES SPOKEN AT HOME

| LANGUAGE                      | PERCENT |
|-------------------------------|---------|
| English                       | 72%     |
| Spanish                       | 26%     |
| German or other West Germanic | 1%      |
| Other Indo-European           | 1%      |
| Total Non-English             | 28%     |

## Tract: 48409010302 Population: 5,498 Area in square miles: 12.28

## **COMMUNITY INFORMATION**

**€PA**



## LIMITED ENGLISH SPEAKING BREAKDOWN

| Speak Spanish                        | 60%         |
|--------------------------------------|-------------|
| Speak Other Indo-European Languages  | <b>40</b> % |
| Speak Asian-Pacific Island Languages | 0%          |
| Speak Other Languages                | 0%          |

Notes: Numbers may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017-2021. Life expectancy data comes from the Centers for Disease Control.

## **Environmental Justice & Supplemental Indexes**

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the EJScreen website.

## **EJ INDEXES**



The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of color nonulations with a single environmental indicator.

## **SUPPLEMENTAL INDEXES**

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high school education, percent unemployed, and low life expectancy with a single environmental indicator,



## SUPPLEMENTAL INDEXES FOR THE SELECTED LOCATION

These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

Report for Tract: 48409010302

 $\equiv$ 

## **EJScreen Environmental and Socioeconomic Indicators Data**

| SELECTED VARIABLES                                                |        | STATE<br>AVERAGE | PERCENTILE<br>IN STATE | USA AVERAGE | PERCENTILE<br>IN USA |
|-------------------------------------------------------------------|--------|------------------|------------------------|-------------|----------------------|
| POLLUTION AND SOURCES                                             |        |                  |                        |             |                      |
| Particulate Matter (µg/m <sup>3</sup> )                           | 8.65   | 9.11             | 20                     | 8.08        | 63                   |
| Ozone (ppb)                                                       | 59     | 64.6             | 8                      | 61.6        | 32                   |
| Diesel Particulate Matter (µg/m <sup>3</sup> )                    | 0.0863 | 0.218            | 12                     | 0.261       | 12                   |
| Air Toxics Cancer Risk* (lifetime risk per million)               | 20     | 28               | 1                      | 25          | 5                    |
| Air Toxics Respiratory HI*                                        | 0.2    | 0.3              | 1                      | 0.31        | 4                    |
| Toxic Releases to Air                                             | 6,600  | 12,000           | 77                     | 4,600       | 89                   |
| Traffic Proximity (daily traffic count/distance to road)          | 8      | 150              | 10                     | 210         | 14                   |
| Lead Paint (% Pre-1960 Housing)                                   | 0.093  | 0.17             | 57                     | 0.3         | 34                   |
| Superfund Proximity (site count/km distance)                      |        | 0.085            | 96                     | 0.13        | 93                   |
| RMP Facility Proximity (facility count/km distance)               |        | 0.63             | 61                     | 0.43        | 75                   |
| Hazardous Waste Proximity (facility count/km distance)            |        | 0.75             | 56                     | 1.9         | 46                   |
| Underground Storage Tanks (count/km <sup>2</sup> )                |        | 2.3              | 24                     | 3.9         | 34                   |
| Wastewater Discharge (toxicity-weighted concentration/m distance) |        | 0.91             | 97                     | 22          | 92                   |
| SOCIOECONOMIC INDICATORS                                          |        |                  |                        |             |                      |
| Demographic Index                                                 | 46%    | 46%              | 51                     | 35%         | 70                   |
| Supplemental Demographic Index                                    | 15%    | 17%              | 50                     | 14%         | 60                   |
| People of Color                                                   | 58%    | 58%              | 49                     | 39%         | 71                   |
| Low Income                                                        | 34%    | 34%              | 54                     | 31%         | 61                   |
| Unemployment Rate                                                 |        | 5%               | 40                     | 6%          | 37                   |
| Limited English Speaking Households                               |        | 8%               | 58                     | 5%          | 74                   |
| Less Than High School Education                                   |        | 16%              | 52                     | 12%         | 65                   |
| Under Age 5                                                       |        | 6%               | 34                     | 6%          | 39                   |
| Over Age 64                                                       | 13%    | 14%              | 52                     | 17%         | 38                   |
| Low Life Expectancy                                               | 22%    | 20%              | 73                     | 20%         | 74                   |

\*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

## Sites reporting to EPA within defined area:

| Superfund                                                    | 1  |
|--------------------------------------------------------------|----|
| Hazardous Waste, Treatment, Storage, and Disposal Facilities | 0  |
| Water Dischargers                                            | 41 |
| Air Pollution                                                | 4  |
| Brownfields                                                  | 0  |
| Toxic Release Inventory                                      | 2  |

## Other community features within defined area:

| Schools 1           |
|---------------------|
| Hospitals 0         |
| Places of Worship 0 |

## Other environmental data:

| Air Non-attainment | No  |
|--------------------|-----|
| Impaired Waters    | Yes |

| Selected location contains American Indian Reservation Lands*            | No  |
|--------------------------------------------------------------------------|-----|
| Selected location contains a "Justice40 (CEJST)" disadvantaged community | Yes |
| Selected location contains an EPA IRA disadvantaged community            | Yes |

Report for Tract: 48409010302

## **EJScreen Environmental and Socioeconomic Indicators Data**

| HEALTH INDICATORS         |              |               |                  |            |               |  |
|---------------------------|--------------|---------------|------------------|------------|---------------|--|
| INDICATOR                 | HEALTH VALUE | STATE AVERAGE | STATE PERCENTILE | US AVERAGE | US PERCENTILE |  |
| Low Life Expectancy       | 22%          | 20%           | 73               | 20%        | 74            |  |
| Heart Disease             | 6            | 5.9           | 53               | 6.1        | 50            |  |
| Asthma                    | 9.3          | 9.2           | 56               | 10         | 33            |  |
| Cancer                    | 5.4          | 5.2           | 58               | 6.1        | 33            |  |
| Persons with Disabilities | 13.7%        | 12.3%         | 64               | 13.4%      | 58            |  |

| CLIMATE INDICATORS |              |               |                  |            |               |  |
|--------------------|--------------|---------------|------------------|------------|---------------|--|
| INDICATOR          | HEALTH VALUE | STATE AVERAGE | STATE PERCENTILE | US AVERAGE | US PERCENTILE |  |
| Flood Risk         | 18%          | 10%           | 86               | 12%        | 82            |  |
| Wildfire Risk      | 2%           | 30%           | 57               | 14%        | 79            |  |

|                          |              | CRITICAL SERVI | CE GAPS          |            |               |
|--------------------------|--------------|----------------|------------------|------------|---------------|
| INDICATOR                | HEALTH VALUE | STATE AVERAGE  | STATE PERCENTILE | US AVERAGE | US PERCENTILE |
| Broadband Internet       | 18%          | 15%            | 66               | 14%        | 70            |
| Lack of Health Insurance | 18%          | 18%            | 55               | 9%         | 90            |
| Housing Burden           | No           | N/A            | N/A              | N/A        | N/A           |
| Transportation Access    | Yes          | N/A            | N/A              | N/A        | N/A           |
| Food Desert              | No           | N/A            | N/A              | N/A        | N/A           |

Footnotes

Report for Tract: 48409010302

www.epa.gov/ejscreen

## APPENDIX E EMISSIONS CALCULATIONS

## Table E-1 Summary of Project Emissions Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

Emission Summary by EPN

| EDN                      | FINI                    | Description                                              | Tabla        | V        | DC       | N       | D <sub>x</sub> | C        | 0      | PI      | N        | PN      | 10       | PM      | 2.5      | S        | 02       | H <sub>2</sub> S |       | NH      | 3        |
|--------------------------|-------------------------|----------------------------------------------------------|--------------|----------|----------|---------|----------------|----------|--------|---------|----------|---------|----------|---------|----------|----------|----------|------------------|-------|---------|----------|
| EPN                      | FIN                     | Description                                              | Table        | (lb/hr)  | (tpy)    | (lb/hr) | (tpy)          | (lb/hr)  | (tpy)  | (lb/hr) | (tpy)    | (lb/hr) | (tpy)    | (lb/hr) | (tpy)    | (lb/hr)  | (tpy)    | (lb/hr)          | (tpy) | (lb/hr) | (tpy)    |
| CTWR1                    | CTWR1                   | Cooling Tower 1                                          | E-2          |          |          |         |                |          |        | 27.97   | 85.67    | 0.12    | 0.36     |         |          |          |          |                  |       | 1.96    | 8.58     |
| CTWR2                    | CTWR2                   | Cooling Tower 2                                          | E-2          |          |          |         |                |          |        | 27.97   | 85.67    | 0.12    | 0.36     |         |          |          |          |                  |       | 1.96    | 8.58     |
| BLR-AUX1                 | BLR-AUX1                | Auxiliary Boiler                                         | E-3          | 1.01     | 0.75     | 1.88    | 1.72           | 5.91     | 5.40   | 1.40    | 0.47     | 1.40    | 0.47     | 1.40    | 0.47     | 0.11     | 0.10     |                  |       |         |          |
| H-201                    | H-201                   | Fired Process Heater 1                                   | E-3          | 1.15     | 5.05     | 4.40    | 12.87          | 5.89     | 21.51  | 1.31    | 2.36     | 1.31    | 2.36     | 1.31    | 2.36     | 0.17     | 0.75     |                  |       | 1.13    | 4.94     |
| H-201                    | H-202                   | Steam Superheater 1                                      | E-3          | 1.71     | 7.48     | 6.51    | 19.06          | 8.72     | 31.86  | 1.94    | 3.50     | 1.94    | 3.50     | 1.94    | 3.50     | 0.26     | 1.12     |                  |       | 1.67    | 7.31     |
| H-201                    | H-201,<br>H-202         | Train 1 Heaters Cap                                      | E-3          | 2.86     | 12.53    | 10.91   | 31.93          | 14.61    | 53.37  | 3.25    | 5.86     | 3.25    | 5.86     | 3.25    | 5.86     | 0.43     | 1.87     |                  |       | 2.80    | 12.25    |
| H-203                    | H-203                   | Fired Process Heater 2                                   | E-3          | 1.15     | 5.05     | 4.40    | 12.87          | 5.89     | 21.51  | 1.31    | 2.36     | 1.31    | 2.36     | 1.31    | 2.36     | 0.17     | 0.75     |                  |       | 1.13    | 4.94     |
| H-203                    | H-204                   | Steam Superheater 2                                      | E-3          | 1.71     | 7.48     | 6.51    | 19.06          | 8.72     | 31.86  | 1.94    | 3.50     | 1.94    | 3.50     | 1.94    | 3.50     | 0.26     | 1.12     |                  |       | 1.67    | 7.31     |
| H-203                    | H-203 <i>,</i><br>H-204 | Train 2 Heaters Cap                                      | E-3          | 2.86     | 12.53    | 10.91   | 31.93          | 14.61    | 53.37  | 3.25    | 5.86     | 3.25    | 5.86     | 3.25    | 5.86     | 0.43     | 1.87     |                  |       | 2.80    | 12.25    |
| H-590                    | H-590                   | Startup Heater 1                                         | E-3          | 0.63     | 2.50E-03 | 1.16    | 4.64E-03       | 3.68     | 0.01   | 0.86    | 3.46E-03 | 0.86    | 3.46E-03 | 0.86    | 3.46E-03 | 0.07     | 2.73E-04 |                  |       |         |          |
| H-591                    | H-591                   | Startup Heater 2                                         | E-3          | 0.63     | 2.50E-03 | 1.16    | 4.64E-03       | 3.68     | 0.01   | 0.86    | 3.46E-03 | 0.86    | 3.46E-03 | 0.86    | 3.46E-03 | 0.07     | 2.73E-04 |                  |       |         |          |
| FW-PUMP1                 | FW-PUMP1                | Diesel Fire Water Pump                                   | E-4          | 4.41     | 0.22     | 4.41    | 0.22           | 3.86     | 0.19   | 0.22    | 0.01     | 0.22    | 0.01     | 0.22    | 0.01     | 2.65E-03 | 1.33E-04 |                  |       |         |          |
| FW-PUMP2                 | FW-PUMP2                | Diesel Fire Water Pump                                   | E-4          | 4.41     | 0.22     | 4.41    | 0.22           | 3.86     | 0.19   | 0.22    | 0.01     | 0.22    | 0.01     | 0.22    | 0.01     | 2.65E-03 | 1.33E-04 |                  |       |         |          |
| FW-PUMP3                 | FW-PUMP3                | Diesel Fire Water Pump                                   | E-4          | 4.41     | 0.22     | 4.41    | 0.22           | 3.86     | 0.19   | 0.22    | 0.01     | 0.22    | 0.01     | 0.22    | 0.01     | 2.65E-03 | 1.33E-04 |                  |       |         |          |
| EG-1                     | EG-1                    | Diesel Emergency Generator 1                             | E-4          | 42.33    | 2.12     | 42.33   | 2.12           | 23.15    | 1.16   | 1.32    | 0.07     | 1.32    | 0.07     | 1.32    | 0.07     | 0.02     | 7.96E-04 |                  |       |         |          |
| EG-2                     | EG-2                    | Diesel Emergency Generator 2                             | E-4          | 42.33    | 2.12     | 42.33   | 2.12           | 23.15    | 1.16   | 1.32    | 0.07     | 1.32    | 0.07     | 1.32    | 0.07     | 0.02     | 7.96E-04 |                  |       |         |          |
| FL-1                     | FL-1                    | Ammonia Plant Front End Flare 1 - Pilot                  | E-5          | 8.32E-03 | 0.04     | 0.10    | 0.43           | 0.85     | 3.71   |         |          |         |          |         |          | 9.07E-04 | 3.97E-03 |                  |       |         |          |
| FL-1                     | FL-1SUSD                | Ammonia Plant Front End Flare 1 - SU/SD                  | E-6          | 190.19   | 0.97     | 386.18  | 3.97           | 3,194.74 | 24.80  |         |          |         |          |         |          |          |          |                  |       | 238.77  | 0.96     |
| FL-2                     | FL-2                    | Ammonia Plant Back End Flare 1 - Pilot                   | E-5          | 8.32E-03 | 0.04     | 0.10    | 0.43           | 0.85     | 3.71   |         |          |         |          |         |          | 9.07E-04 | 3.97E-03 |                  |       |         |          |
| FL-2                     | FL-2SUSD                | Ammonia Plant Back End Flare 1 - SU/SD                   | E-7          | 3.53     | 0.01     | 21.68   | 0.09           | 36.87    | 0.15   |         |          |         |          |         |          |          |          |                  |       | 19.98   | 0.09     |
| FL-3                     | FL-3                    | Ammonia Storage Flare - Pilot                            | E-5          | 6.24E-03 | 0.03     | 0.07    | 0.32           | 0.64     | 2.78   |         |          |         |          |         |          | 6.80E-04 | 2.98E-03 |                  |       |         |          |
| FL-3                     | FL-3SUSD                | Ammonia Storage Flare - SU/SD                            | E-8          |          |          | 53.55   | 9.48           |          |        |         |          |         |          |         |          |          |          |                  |       | 97.00   | 17.17    |
| FL-4                     | FL-4                    | Ammonia Plant Front End Flare 2 - Pilot                  | E-5          | 8.32E-03 | 0.04     | 0.10    | 0.43           | 0.85     | 3.71   |         |          |         |          |         |          | 9.07E-04 | 3.97E-03 |                  |       |         |          |
| FL-4                     | FL-4SUSD                | Ammonia Plant Front End Flare 2 - SU/SD                  | E-9          | 190.19   | 0.97     | 386.18  | 3.97           | 3,194.74 | 24.80  |         |          |         |          |         |          |          |          |                  |       | 238.77  | 0.96     |
| FL-5                     | FL-5                    | Ammonia Plant Back End Flare 2 - Pilot                   | E-5          | 8.32E-03 | 0.04     | 0.10    | 0.43           | 0.85     | 3.71   |         |          |         |          |         |          | 9.07E-04 | 3.97E-03 |                  |       |         |          |
| FL-5                     | FL-5SUSD                | Ammonia Plant Back End Flare 2 - SU/SD                   | E-10         | 3.53     | 0.01     | 21.68   | 0.09           | 36.87    | 0.15   |         |          |         |          |         |          |          |          |                  |       | 19.98   | 0.09     |
| TK-1                     | TK-1                    | Diesel Tank                                              | E-11         | 0.34     | 1.53E-03 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |
| 1K-2                     | 1K-2                    | Diesel lank                                              | E-11         | 0.34     | 1.53E-03 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |
| TK-3A                    | TK-3A                   | MDEA Storage Tank 1                                      | E-11         | 0.78     | 2.47E-03 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |
| TK-3B                    | TK-3B                   | MDEA Storage Tank 2                                      | E-11         | 0.78     | 2.47E-03 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |
| TK-4A                    | TK-4A                   | MDEA Solution Prep Tank 1                                | E-11         | 0.05     | 1.08E-03 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |
| ТК-4В<br>ТК ГА           | ТК-4В<br>ТК ГА          | MDEA Solution Prep Tank 2                                | E-11         | 0.05     | 1.08E-03 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |
| TK-5A                    | TK-5A                   | MDEA Solution Drain Tank 1                               | E-11         | 0.02     | 1.98E-04 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |
| TK-5B                    |                         | MUDEA Solution Drain Tank 2                              | E-11         | 7.045.04 | 1.98E-04 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         | 4 775 02 |
|                          |                         | WW Equalization Tank                                     | E-11         | 7.04E-04 | 2.61E-04 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       | 0.01    | 4.77E-03 |
|                          |                         | Off Spec Wastewater Tank                                 | C-11         | 7.04E-04 | 2 205 05 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       | 0.01    | 5.30E-03 |
| TK-VVVV5<br>TK-SW/1      | TK-00005                | Contact Storm Water Tank                                 | E-11<br>E_11 | 0.01     | 2.89E-05 |         |                |          |        |         |          |         |          |         |          |          |          |                  |       | 0.23    | 0.10E-05 |
|                          |                         | Low Flow CO. Vent 1                                      | L-11<br>E 12 | 0.01     | 9.192-00 |         |                | 0.02     | 0.12   |         |          |         |          |         |          |          |          |                  |       | 0.11    | 9.19L-0J |
| VTC02-1                  | VTC02-1                 | Light Flow $CO_2$ Vent 1 (Provisional Operation)         | E-12         |          |          |         |                | 0.03     | 12.27  |         |          |         |          |         |          |          |          |                  |       |         |          |
| V1C02-2                  | VICO2-2P                | High Flow CO <sub>2</sub> Vent 1 (Provisional Operation) | E-12         |          |          |         |                | 5.68     | 12.27  |         |          |         |          |         |          |          |          |                  |       |         |          |
| VTCO2-2                  | VTCO2-2                 | High Flow CO <sub>2</sub> Vent 1                         | E-12         |          |          |         |                | 5.68     | 6.16   |         |          |         |          |         |          |          |          |                  |       |         |          |
| VTCO2-3                  | VTCO2-3                 | Low Flow CO <sub>2</sub> Vent 2                          | E-12         |          |          |         |                | 0.03     | 0.12   |         |          |         |          |         |          |          |          |                  |       |         |          |
| VTCO2-4                  | VTCO2-4P                | High Flow CO2 Vent 1 (Provisional Operation)E-12         |              |          |          |         |                | 5.68     | 12.27  |         |          |         |          |         |          |          |          |                  |       |         |          |
| VTCO2-4                  | VTCO2-4                 | High Flow CO <sub>2</sub> Vent 2                         | E-12         |          |          |         |                | 5.68     | 6.16   |         |          |         |          |         |          |          |          |                  |       |         |          |
| FUG                      | FUG                     | Equipment Leak Fugitives                                 | E-13         | 0.08     | 0.34     |         |                | 2.20     | 9.62   |         |          |         |          |         |          |          |          | 0.20             | 0.87  | 1.22    | 5.33     |
| Totals <sup>[1]</sup>    |                         |                                                          |              |          | 33.22    |         | 90.13          |          | 216.97 |         | 183.71   |         | 13.09    |         | 12.37    |          | 3.86     |                  | 0.87  |         | 66.27    |
| PSD Threshold            |                         |                                                          |              |          | 100      |         | 100            |          | 100    |         | 100      |         | 100      |         | 100      |          | 100      |                  | 100   |         |          |
| Less Than PSD Threshold  |                         |                                                          |              |          | Yes      |         | Yes            |          | No     |         | No       |         | Yes      |         | Yes      |          | Yes      |                  | Yes   |         |          |
| Significant Emission Rat |                         |                                                          |              |          | 40       |         | 40             |          | 100    |         | 25       |         | 15       |         | 10       |          | 40       |                  | 10    |         |          |
|                          |                         | Less Than Significant Emissio                            | on Rate?     |          | Yes      |         | No             |          | No     |         | No       |         | Yes      |         | No       |          | Yes      |                  | Yes   |         |          |
|                          |                         |                                                          |              |          |          |         |                |          |        |         |          |         |          |         |          |          |          |                  |       |         |          |

## Notes:

[1] Totals = sum of cooling towers, train 1 and train 2 heaters caps, startup heaters, fire water pumps, emergency generators, flares, tanks, VTCO2-1, VTCO2-2P, VTCO2-3, VTCO2-4P, and fugitives.

## Table E-1 Summary of Project Emissions Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

Emission Summary by EPN

| EPN FIN Description |                 |                                                                             |          | Methanol |          | HCN     |          | CO <sub>2</sub> |                       | CH <sub>4</sub> |                       | N <sub>2</sub> O |                       | CO <sub>2</sub> e |              |
|---------------------|-----------------|-----------------------------------------------------------------------------|----------|----------|----------|---------|----------|-----------------|-----------------------|-----------------|-----------------------|------------------|-----------------------|-------------------|--------------|
|                     |                 | Beschption                                                                  | Tuble    | (lb/hr)  | (tpy)    | (lb/hr) | (tpy)    | (lb/hr)         | (tpy)                 | (lb/hr)         | (tpy)                 | (lb/hr)          | (tpy)                 | (lb/hr)           | (tpy)        |
| CTWR1               | CTWR1           | Cooling Tower 1                                                             | E-2      |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| CTWR2               | CTWR2           | Cooling Tower 2                                                             | E-2      |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| BLR-AUX1            | BLR-AUX1        | Auxiliary Boiler                                                            | E-3      |          |          |         |          | 21,991.73       | 20,109.24             | 0.41            | 0.38                  | 0.04             | 0.04                  | 22,014.44         | 20,130.00    |
| H-201               | H-201           | Fired Process Heater 1                                                      | E-3      | 0.40     | 1.76     |         |          | 34,274.34       | 150,121.62            | 0.65            | 2.83                  | 0.06             | 0.28                  | 34,309.74         | 150,276.66   |
| H-201               | H-202           | Steam Superheater 1                                                         | E-3      | 0.59     | 2.60     |         |          | 50,768.14       | 222,364.44            | 0.96            | 4.19                  | 0.10             | 0.42                  | 50,820.57         | 222,594.10   |
| H-201               | H-201,<br>H-202 | Train 1 Heaters Cap                                                         | E-3      | 0.99     | 4.36     |         |          | 85,042.48       | 372,486.06            | 1.61            | 7.02                  | 0.16             | 0.70                  | 85,130.31         | 372,870.76   |
| H-203               | H-203           | Fired Process Heater 2                                                      | E-3      | 0.40     | 1.76     |         |          | 34,274.34       | 150,121.62            | 0.65            | 2.83                  | 0.06             | 0.28                  | 34,309.74         | 150,276.66   |
| H-203               | H-204           | Steam Superheater 2                                                         | E-3      | 0.59     | 2.60     |         |          | 50,768.14       | 222,364.44            | 0.96            | 4.19                  | 0.10             | 0.42                  | 50,820.57         | 222,594.10   |
| H-203               | H-203,<br>H-204 | Train 2 Heaters Cap                                                         | E-3      | 0.99     | 4.36     |         |          | 85,042.48       | 372,486.06            | 1.61            | 7.02                  | 0.16             | 0.70                  | 85,130.31         | 372,870.76   |
| H-590               | H-590           | Startup Heater 1                                                            | E-3      |          |          |         |          | 13,569.36       | 54.28                 | 0.26            | 1.02E-03              | 0.03             | 1.02E-04              | 13,583.38         | 54.33        |
| H-591               | H-591           | Startup Heater 2                                                            | E-3      |          |          |         |          | 13,569.36       | 54.28                 | 0.26            | 1.02E-03              | 0.03             | 1.02E-04              | 13,583.38         | 54.33        |
| FW-PUMP1            | FW-PUMP1        | Diesel Fire Water Pump                                                      | E-4      |          |          |         |          | 199.57          | 9.98                  | 3.76E-03        | 1.88E-04              | 3.76E-04         | 1.88E-05              | 199.78            | 9.99         |
| FW-PUMP2            | FW-PUMP2        | Diesel Fire Water Pump                                                      | E-4      |          |          |         |          | 199.57          | 9.98                  | 3.76E-03        | 1.88E-04              | 3.76E-04         | 1.88E-05              | 199.78            | 9.99         |
| FW-PUMP3            | FW-PUMP3        | Diesel Fire Water Pump                                                      | E-4      |          |          |         |          | 199.57          | 9.98                  | 3.76E-03        | 1.88E-04              | 3.76E-04         | 1.88E-05              | 199.78            | 9.99         |
| EG-1                | EG-1            | Diesel Emergency Generator 1                                                | E-4      |          |          |         |          | 1.197.43        | 59.87                 | 0.02            | 1.13E-03              | 2.26E-03         | 1.13E-04              | 1.198.67          | 59.93        |
| EG-2                | EG-2            | Diesel Emergency Generator 2                                                | E-4      |          |          |         |          | 1.197.43        | 59.87                 | 0.02            | 1.13E-03              | 2.26E-03         | 1.13E-04              | 1.198.67          | 59.93        |
| FL-1                | FL-1            | Ammonia Plant Front End Flare 1 - Pilot                                     | E-5      |          |          |         |          | 202.22          | 885.72                | 3.81E-03        | 0.02                  | 3.81E-04         | 1.67E-03              | 202.43            | 886.63       |
| FL-1                | FL-1SUSD        | Ammonia Plant Front End Flare 1 - SU/SD                                     | E-6      | 1.04     | 4.18E-03 | 0.05    | 1.44E-04 | 1.179.862.56    | 7.119.07              | 42.61           | 0.27                  | 8.52             | 0.07                  | 1.183.467.78      | 7.147.90     |
| FL-2                | FL-2            | Ammonia Plant Back End Flare 1 - Pilot                                      | E-5      |          |          |         |          | 202.22          | 885.72                | 3.81E-03        | 0.02                  | 3.81E-04         | 1.67E-03              | 202.43            | 886.63       |
| FL-2                | FL-2SUSD        | Ammonia Plant Back End Flare 1 - SU/SD                                      | E-7      |          |          |         |          | 7,999.38        | 32.31                 | 0.41            | 1.64E-03              | 0.08             | 3.28E-04              | 8.021.46          | 32.40        |
| FL-3                | FL-3            | Ammonia Storage Flare - Pilot                                               | E-5      |          |          |         |          | 151.66          | 664.29                | 2.86E-03        | 0.01                  | 2.86E-04         | 1.25E-03              | 151.82            | 664.97       |
| FL-3                | FL-3SUSD        | Ammonia Storage Flare - SU/SD                                               | E-8      |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| FL-4                | FL-4            | Ammonia Plant Front End Flare 2 - Pilot                                     | E-5      |          |          |         |          | 202.22          | 885.72                | 3.81E-03        | 0.02                  | 3.81E-04         | 1.67E-03              | 202.43            | 886.63       |
| FI -4               | FL-4SUSD        | Ammonia Plant Front End Flare 2 - SU/SD                                     | F-9      | 1.04     | 4.18F-03 | 0.05    | 1.44F-04 | 1,179,862,56    | 7,119.07              | 42.61           | 0.27                  | 8.52             | 0.07                  | 1.183.467.78      | 7.147.90     |
| FL-5                | FL-5            | Ammonia Plant Back End Flare 2 - Pilot                                      | E-5      |          |          |         |          | 202.22          | 885.72                | 3.81E-03        | 0.02                  | 3.81E-04         | 1.67E-03              | 202.43            | 886.63       |
| FL-5                | FL-5SUSD        | Ammonia Plant Back End Flare 2 - SU/SD                                      | E-10     |          |          |         |          | 7,999,38        | 32.31                 | 0.41            | 1.64E-03              | 0.08             | 3.28E-04              | 8.021.46          | 32.40        |
| TK-1                | TK-1            | Diesel Tank                                                                 | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| ТК-2                | TK-2            | Diesel Tank                                                                 | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-3A               | TK-3A           | MDEA Storage Tank 1                                                         | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-3B               | TK-3B           | MDEA Storage Tank 2                                                         | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-4A               | TK-4A           | MDEA Solution Prep Tank 1                                                   | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-4B               | TK-4B           | MDEA Solution Prep Tank 2                                                   | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-5A               | TK-5A           | MDEA Solution Drain Tank 1                                                  | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-5B               | TK-5B           | MDEA Solution Drain Tank 2                                                  | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-WW1              | TK-WW1          | WW Equalization Tank                                                        | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-WW2              | TK-WW2          | WW Neutralization Tank                                                      | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-WW3              | TK-WW3          | Off-Spec Wastewater Tank                                                    | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| TK-SW1              | TK-SW1          | Contact Storm Water Tank                                                    | E-11     |          |          |         |          |                 |                       |                 |                       |                  |                       |                   |              |
| VTCO2-1             | VTCO2-1         | Low Flow CO <sub>2</sub> Vent 1                                             | E-12     |          |          |         |          | 2,968.80        | 13,003.35             | 0.04            | 0.19                  |                  |                       | 2,969.86          | 13,007.98    |
| VTC02-2             | VTCO2-2P        | High Flow CO <sub>2</sub> Vent 1 (Provisional Operation)                    | F-12     |          |          |         |          | 593 531 96      | 1 282 029 03          | 8 46            | 18 27                 |                  |                       | 593 743 43        | 1 282 485 81 |
|                     | VTC02-2         | High Flow CO. Vent 1                                                        | E_12     |          |          |         |          | 502 521 06      | 643 388 64            | 8.16            | 0 17                  |                  |                       | 502 7/12 /12      | 643 617 88   |
| VTCO2-2             | VTCO2-2         | Low Flow CO. Vont 2                                                         | L-12     |          |          |         |          | 2 0 6 9 90      | 12 002 25             | 0.40            | 9.17                  |                  |                       | 2 060 00          | 12 007 00    |
| v1CO2-3             | VTCU2-3         |                                                                             | E-12     |          |          |         |          | 2,968.80        | 13,003.35             | 0.04            | 0.19                  |                  |                       | 2,969.86          | 13,007.98    |
| VICO2-4             | VICO2-4P        | <ul> <li>High Flow CO<sub>2</sub> Vent 1 (Provisional Operation)</li> </ul> |          |          |          |         |          | 593,531.96      | 1,282,029.03          | 8.46            | 18.27                 |                  |                       | 593,743.43        | 1,282,485.81 |
| VTCO2-4             | VTCO2-4         | High Flow CO <sub>2</sub> Vent 2                                            | E-12     |          |          |         |          | 593,531.96      | 643,388.64            | 8.46            | 9.17                  |                  |                       | 593,743.43        | 643,617.88   |
| FUG                 | FUG             | Equipment Leak Fugitives                                                    | E-13     |          |          |         |          | 3.03            | 13.26                 | 3.78            | 16.56                 |                  |                       | 97.55             | 427.28       |
| Total               |                 |                                                                             |          |          | 8.73     |         | 2.87E-04 |                 | 3,373,927.55          |                 | 68.54                 |                  | 1.59                  |                   | 3,376,116.96 |
|                     |                 | PSD TI                                                                      | hreshold |          |          |         |          |                 | See CO <sub>2</sub> e |                 | See CO <sub>2</sub> e |                  | See CO <sub>2</sub> e |                   |              |
|                     |                 | Less Than PSD Th                                                            | reshold? |          |          |         |          |                 |                       |                 |                       |                  |                       |                   | No           |
|                     |                 | Significant Emiss                                                           | ion Rate |          |          |         |          |                 | See CO <sub>2</sub> e |                 | See CO <sub>2</sub> e |                  | See CO <sub>2</sub> e |                   | 75,000       |
|                     |                 | Less Than Significant Emissio                                               | on Rate? |          |          |         |          |                 |                       |                 |                       |                  |                       |                   | No           |

#### Table E-2 Cooling Tower Emissions (EPNs: CTWR1, CTWR2) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

| Inputs                 |         |         |               |
|------------------------|---------|---------|---------------|
| Parameter              | CTWR1   | CTWR2   | Unit          |
| Water Flow Pate        | 255,338 | 255,338 | gal/min (max) |
| Water Flow Rate        | 217,037 | 217,037 | gal/min (avg) |
| TDS Lovel              | 43,750  | 43,750  | ppmw (max)    |
| TD3 Level              | 36,000  | 36,000  | ppmw (avg)    |
| Drift Loss             | 0.0005% | 0.0005% | %             |
| Water Density          | 8.34    | 8.34    | lb/gal        |
| Annual Operating Hours | 8,760   | 8,760   | hrs/yr        |

| <b>Calculations</b>                                          |                                                           |                       | (                                                       | CTWR1                                    | CTWR2                                                   |                                          |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------|-----------------------|---------------------------------------------------------|------------------------------------------|---------------------------------------------------------|------------------------------------------|--|--|--|
| Pollutant                                                    | Emission                                                  | Factor <sup>[1]</sup> | Maximum Total<br>Short-term<br>Emissions <sup>[2]</sup> | Annual Total<br>Emissions <sup>[2]</sup> | Maximum Total<br>Short-term<br>Emissions <sup>[2]</sup> | Annual Total<br>Emissions <sup>[2]</sup> |  |  |  |
|                                                              | Value                                                     | Units                 | lb/hr                                                   | tpy                                      | lb/hr                                                   | tpy                                      |  |  |  |
| Evaporative Losses<br>(used for NH <sub>3</sub> calculation) | aporative Losses 0.7 sed for NH <sub>3</sub> calculation) |                       | lb/MMgal 10.72                                          |                                          | 10.72                                                   | 46.97                                    |  |  |  |
| BNA                                                          | 0.365                                                     | lb/gal (max)          | 27.97                                                   |                                          | 27.97                                                   |                                          |  |  |  |
| PIVI                                                         | 0.300                                                     | lb/gal (avg)          |                                                         | 85.67                                    |                                                         | 85.67                                    |  |  |  |
| DM                                                           | 1.55E-03                                                  | lb/gal (max)          | 0.12                                                    |                                          | 0.12                                                    |                                          |  |  |  |
| F 10110                                                      | 1.28E-03                                                  | lb/gal (avg)          |                                                         | 0.36                                     |                                                         | 0.36                                     |  |  |  |
| DM.                                                          |                                                           | lb/gal (max)          |                                                         |                                          |                                                         |                                          |  |  |  |
| 1 1012.5                                                     |                                                           | lb/gal (avg)          |                                                         |                                          |                                                         |                                          |  |  |  |

| Speciated Emissions |                 |                     |                                                         | CTWR1                                    | CTWR2                                                   |                                          |  |  |  |
|---------------------|-----------------|---------------------|---------------------------------------------------------|------------------------------------------|---------------------------------------------------------|------------------------------------------|--|--|--|
| Pollutant           | Species         | Wt % <sup>[3]</sup> | Maximum Total<br>Short-term<br>Emissions <sup>[2]</sup> | Annual Total<br>Emissions <sup>[2]</sup> | Maximum Total<br>Short-term<br>Emissions <sup>[2]</sup> | Annual Total<br>Emissions <sup>[2]</sup> |  |  |  |
|                     |                 |                     | lb/hr                                                   | tpy                                      | lb/hr                                                   | tpy                                      |  |  |  |
| NH <sub>2</sub>     | NH <sub>2</sub> | 18.27%              | 1.96                                                    | 8.58                                     | 1.96                                                    | 8.58                                     |  |  |  |

#### Particle Size Calculation

|             | Typical Cooling Tow   | er Droplet Size             |                   |
|-------------|-----------------------|-----------------------------|-------------------|
|             | EPRI Droplet Diameter | EPRI Mass                   | Particle Size [4] |
| Size Bin ID | [4]                   | Distribution <sup>[4]</sup> |                   |
|             | (Dd, microns)         | (% Mass Smaller<br>Than)    | (Dp, microns)     |
| 1           | 10                    |                             | 2.71              |
| 2           | 20                    | 0.196                       | 5.42              |
| 3           | 30                    | 0.226                       | 8.13              |
| 4           | 40                    | 0.514                       | 10.84             |
| 5           | 50                    | 1.816                       | 13.55             |
| 6           | 60                    | 5.702                       | 16.26             |
| 7           | 70                    | 21.348                      | 18.96             |
| 8           | 90                    | 49.812                      | 24.38             |
| 9           | 110                   | 70.509                      | 29.80             |
| 10          | 130                   | 82.023                      | 35.22             |
| 11          | 150                   | 88.012                      | 40.64             |
| 12          | 180                   | 91.032                      | 48.77             |
| 13          | 210                   | 92.468                      | 56.89             |
| 14          | 240                   | 94.091                      | 65.02             |
| 15          | 270                   | 94.689                      | 73.15             |
| 16          | 300                   | 96.288                      | 81.28             |
| 17          | 350                   | 97.011                      | 94.82             |
| 18          | 400                   | 98.34                       | 108.37            |
| 19          | 450                   | 99.071                      | 121.92            |
| 20          | 500                   | 99.071                      | 135.46            |
| 21          | 600                   | 100                         | 162.56            |

PM<sub>10</sub> % Mass 0.43

by linear Interpolation

by linear Interpolation

PM<sub>2.5</sub> % Mass

 $\label{eq:Dp} \begin{array}{l} \mathsf{Dp} \ = \mathsf{Dd} \ * \ [(\mathsf{pd}/\mathsf{pp}) \ * \ (\mathsf{TDS} \ [\mathsf{max}]) \ / \ \mathbf{1},\! 000,\! 000)] \ ^ 1/3 \\ \text{Reference: Reisman-Frisbie method} \ ^{[3]} \end{array}$ 

where: Density of Water (pd)= Density of TDS (pp) = 1 g/cm<sup>3</sup> 2.2 g/cm<sup>3</sup>

#### Notes:

[1] PM emission factor is based on the conversion of TDS (ppmw) to lb/gal: TDS (ppmw = mg/L) / 453,590 mg/lb x 3.785 L/gal. PM<sub>10</sub> = PM (lb/gal) x PM<sub>10</sub> % Mass (from Particle Size Calculation)

 $PM_{2.5} = PM$  (lb/gal) x  $PM_{2.5}$  % Mass (from Particle Size Calculation)

NH<sub>3</sub> emission factor from AP-42 Section 5.1, Table 5.1-2, factor for controlled emissions.

[2] Evaporative Losses and PM/PM<sub>10</sub>/PM<sub>2.5</sub> (lb/hr) = Water Flow Rate (gal/min) x Conversion (60 min/hr) x Emission Factor (lb/gal) x Drift Loss (%) Evaporative Losses and PM/PM<sub>10</sub>/PM<sub>2.5</sub> (tpy) = Maximum Short-term Emissions (lb/hr) x Annual Operating Hours (hrs/yr) / Conversion (2,000 lb/ton) NH<sub>3</sub> (lb/hr and tpy) = Evaporative Losses (lb/hr or tpy) x Wt %

[3] Stream data from plant design document.

[4] "Calculating Realistic PM10 Emissions from Cooling Towers," Abstract No. 216, Session No. AM-1b, Joel Reisman and Gordon Frisbie,

Greystone Environmental Consultants, Inc.

## Conversions:

453,590 mg/lb

3.785 L/gal 2,000 lb/ton 60 min/hr

## Table E-3

Boiler and Heater Emissions (FINs/EPNs: BLR-AUX1/BLR-AUX1, H-201/H-201, H-202/H-201, H-203/H-203, H-204/H-203, H-590/H-590, H-591/H-591) Ingleside Blue Ammonia

Ingleside Clean Ammonia Partners, LLC

## Equipment Properties and Emission Factors - Routine

| EIN      | (MMBtu/hr) | Schodulo<br>(hr/yr) |               |                 |       |          | Emi              | ssion Factors<br>(lb/MMBtu) | ;[1]     |                 |        |          |                  |
|----------|------------|---------------------|---------------|-----------------|-------|----------|------------------|-----------------------------|----------|-----------------|--------|----------|------------------|
|          | Routine /  | Routine /           | voc           | NO <sub>x</sub> | со    | PM       | PM <sub>10</sub> | PM <sub>2.5</sub>           | SO2      | NH <sub>3</sub> | CO2    | CH₄      | N <sub>2</sub> O |
|          | Average    | Average             |               |                 |       |          |                  |                             |          |                 |        |          |                  |
| BLR-AUX1 | 38         | 8,760               |               | 0.010           | 0.031 | 2.47E-03 | 2.47E-03         | 2.47E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-201    | 293        | 8,760               | See "Fuel Gas | 0.010           | 0.017 | 1.83E-03 | 1.83E-03         | 1.83E-03                    | 5.88E-04 | 3.85E-03        | 116.98 | 2.20E-03 | 2.20E-04         |
| H-202    | 434        | 8,760               | Deremeters"   | 0.010           | 0.017 | 1.83E-03 | 1.83E-03         | 1.83E-03                    | 5.88E-04 | 3.85E-03        | 116.98 | 2.20E-03 | 2.20E-04         |
| H-203    | 293        | 8,760               | Parameters    | 0.010           | 0.017 | 1.83E-03 | 1.83E-03         | 1.83E-03                    | 5.88E-04 | 3.85E-03        | 116.98 | 2.20E-03 | 2.20E-04         |
| H-204    | 434        | 8,760               |               | 0.010           | 0.017 | 1.83E-03 | 1.83E-03         | 1.83E-03                    | 5.88E-04 | 3.85E-03        | 116.98 | 2.20E-03 | 2.20E-04         |
| H-590    | 85         | 40                  | 5.39E-03      | 0.010           |       | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-591    | 85         | 40                  | 5.39E-03      | 0.010           |       | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |

## Equipment Properties and Emission Factors - Startup and Shutdown (Natural Gas)

| FIN      | (MMBtu/hr)         | Schodulo<br>(hr/yr) |          |                 |       |          | Emi              | ssion Factors<br>(lb/MMBtu) | ;[1]     |                 |        |          |                  |
|----------|--------------------|---------------------|----------|-----------------|-------|----------|------------------|-----------------------------|----------|-----------------|--------|----------|------------------|
|          | SU/SD /<br>Maximum | SU/SD /<br>Maximum  | voc      | NO <sub>x</sub> | СО    | РМ       | PM <sub>10</sub> | PM <sub>2.5</sub>           | SO2      | NH <sub>3</sub> | CO2    | CH₄      | N <sub>2</sub> O |
| BLR-AUX1 | 188                | 96                  | 5.39E-03 | 0.010           | 0.031 | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-201    | 176                | 48                  | 5.39E-03 | 0.025           | 0.033 | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-202    | 260                | 48                  | 5.39E-03 | 0.025           | 0.033 | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-203    | 176                | 48                  | 5.39E-03 | 0.025           | 0.033 | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-204    | 260                | 48                  | 5.39E-03 | 0.025           | 0.033 | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-590    | 116                | 8                   | 5.39E-03 | 0.010           | 0.032 | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |
| H-591    | 116                | 8                   | 5.39E-03 | 0.010           | 0.032 | 7.45E-03 | 7.45E-03         | 7.45E-03                    | 5.88E-04 |                 | 116.98 | 2.20E-03 | 2.20E-04         |

## Equipment Properties and Emission Factors - Startup and Shutdown (Fuel Gas)

| FIN      | MMBtu/hr) | Cohodulo<br>(hr/yr) |               |       |                    |          | Emi      | ssion Factors<br>(lb/MMBtu) | 5 <sup>[1]</sup> |          |        |          |          |
|----------|-----------|---------------------|---------------|-------|--------------------|----------|----------|-----------------------------|------------------|----------|--------|----------|----------|
|          | SU/SD /   | SU/SD /             | VOC           | NO.   | NO <sub>2</sub> CO |          | PM.      | PM                          | 50.              | NH.      | 0.     | CH.      | N-0      |
|          | Maximum   | Maximum             | Võc           | Nox   |                    |          | 10       | 1112.5                      | 302              | 1113     | 202    | C114     | 1120     |
| BLR-AUX1 | 188       | 96                  |               | 0.010 | 0.031              | 2.47E-03 | 2.47E-03 | 2.47E-03                    | 5.88E-04         |          | 116.98 | 2.20E-03 | 2.20E-04 |
| H-201    | 176       | 48                  | Soo "Fuel Car | 0.010 | 0.017              | 1.83E-03 | 1.83E-03 | 1.83E-03                    | 5.88E-04         | 3.85E-03 | 116.98 | 2.20E-03 | 2.20E-04 |
| H-202    | 260       | 48                  | Deremeters"   | 0.010 | 0.017              | 1.83E-03 | 1.83E-03 | 1.83E-03                    | 5.88E-04         | 3.85E-03 | 116.98 | 2.20E-03 | 2.20E-04 |
| H-203    | 176       | 48                  | Parameters    | 0.010 | 0.017              | 1.83E-03 | 1.83E-03 | 1.83E-03                    | 5.88E-04         | 3.85E-03 | 116.98 | 2.20E-03 | 2.20E-04 |
| H-204    | 260       | 48                  |               | 0.010 | 0.017              | 1.83E-03 | 1.83E-03 | 1.83E-03                    | 5.88E-04         | 3.85E-03 | 116.98 | 2.20E-03 | 2.20E-04 |

## Fuel Gas Parameters

|                                      | Val                         | ue     |            |
|--------------------------------------|-----------------------------|--------|------------|
| Parameter                            | Heaters<br>(H-201 to H-204) | Boiler | Unit       |
| Higher Heating Value                 | 243.10                      | 306.22 | Btu/scf    |
| Stream MW                            | 8.22                        | 6.11   | lb/lb-mole |
| VOC Wt %                             | 0.45%                       | 0.83%  | %          |
| Methanol Wt %                        | 0.16%                       |        | %          |
| Carbon Compound Mol %<br>(except CO) | 5.84%                       | 9.94%  | %          |
| DPE                                  | 0.0%                        | 0.0%   | 0/         |

\*CO is excluded from the "Carbon Compound Mol %" because it is assumed that CO is converted to CO 2; therefore, the carbon from CO is not available to form particulate matter.

10/11/2023 Initial Air Quality Permit Application

## Table E-3 Boiler and Heater Emissions (FINs/EPNs: BLR-AUX1/BLR-AUX1, H-201/H-201, H-202/H-201, H-203/H-203, H-204/H-203, H-590/H-590, H-591/H-591) Ingleside Blue Ammonia

Ingleside Clean Ammonia Partners, LLC

### **Routine Emission Calculations**

| Routine Lini |         |                 |        |                  |                  |                    |                 |                 |              |                                |                                |                                 |                                 |       |         |         |                  |                  |                    |                 |                 |            |                                |                                |                                   |                         |
|--------------|---------|-----------------|--------|------------------|------------------|--------------------|-----------------|-----------------|--------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|-------|---------|---------|------------------|------------------|--------------------|-----------------|-----------------|------------|--------------------------------|--------------------------------|-----------------------------------|-------------------------|
| EIN          |         |                 |        |                  |                  | Emission<br>(Ib/   | 1 Rates<br>hr)  |                 |              |                                |                                |                                 |                                 |       |         |         |                  |                  |                    | Emission Ra     | tes             |            |                                |                                |                                   |                         |
| FIIN         | [2]     | [3]             | [3]    | [3]              | [3]              | [3]                | [3]             | [3]             | [2]          | <b>60</b> [3]                  | <b>a</b> u [3]                 | at a [3]                        | [4]                             |       | ang [5] | a a [5] | [5]              | [5]              | 5                  | [5]             |                 |            | <b>60</b> [5]                  | eu [5]                         | N 0 [5]                           | [4]                     |
|              | VOC (1) | NO <sub>x</sub> | CO (*) | PM <sup>co</sup> | PM <sub>10</sub> | PIM <sub>2.5</sub> | SO <sub>2</sub> | NH <sub>3</sub> | Methanol (** | CO <sub>2</sub> <sup>1-1</sup> | CH <sub>4</sub> <sup>1-1</sup> | N <sub>2</sub> O <sup>101</sup> | CO <sub>2</sub> e <sup>co</sup> | VOC 1 | NOX     | CO 141  | PM <sup>13</sup> | PM <sub>10</sub> | PIM <sub>2.5</sub> | SO <sub>2</sub> | NH <sub>3</sub> | Methanol " | CO <sub>2</sub> <sup>101</sup> | CH <sub>4</sub> <sup>1-3</sup> | N <sub>2</sub> O <sup>101</sup> O | .0 <sub>2</sub> e · · · |
| BLR-AUX1     | 0.16    | 0.38            | 1.18   | 0.09             | 0.09             | 0.09               | 0.02            |                 |              | 4,398.35                       | 0.08                           | 8.29E-03                        | 4,402.89                        | 0.70  | 1.65    | 5.18    | 0.41             | 0.41             | 0.41               | 0.10            |                 |            | 19,264.75                      | 0.36                           | 0.04 1                            | 19,284.65               |
| H-201        | 1.15    | 2.93            | 4.91   | 0.53             | 0.53             | 0.53               | 0.17            | 1.13            | 0.40         | 34,274.34                      | 0.65                           | 0.06                            | 34,309.74                       | 5.05  | 12.83   | 21.48   | 2.34             | 2.34             | 2.34               | 0.75            | 4.94            | 1.76       | 150,121.62                     | 2.83                           | 0.28 15                           | 0,276.66                |
| H-202        | 1.71    | 4.34            | 7.27   | 0.79             | 0.79             | 0.79               | 0.26            | 1.67            | 0.59         | 50,768.14                      | 0.96                           | 0.10                            | 50,820.57                       | 7.48  | 19.01   | 31.82   | 3.47             | 3.47             | 3.47               | 1.12            | 7.31            | 2.60       | 222,364.44                     | 4.19                           | 0.42 22                           | 22,594.10               |
| H-203        | 1.15    | 2.93            | 4.91   | 0.53             | 0.53             | 0.53               | 0.17            | 1.13            | 0.40         | 34,274.34                      | 0.65                           | 0.06                            | 34,309.74                       | 5.05  | 12.83   | 21.48   | 2.34             | 2.34             | 2.34               | 0.75            | 4.94            | 1.76       | 150,121.62                     | 2.83                           | 0.28 15                           | 50,276.66               |
| H-204        | 1.71    | 4.34            | 7.27   | 0.79             | 0.79             | 0.79               | 0.26            | 1.67            | 0.59         | 50,768.14                      | 0.96                           | 0.10                            | 50,820.57                       | 7.48  | 19.01   | 31.82   | 3.47             | 3.47             | 3.47               | 1.12            | 7.31            | 2.60       | 222,364.44                     | 4.19                           | 0.42 22                           | 22,594.10               |
| H-590        |         |                 |        |                  |                  |                    |                 |                 |              |                                |                                |                                 |                                 |       |         |         |                  |                  |                    |                 |                 |            |                                |                                |                                   |                         |
| H-591        |         |                 |        |                  |                  |                    |                 |                 |              |                                |                                |                                 |                                 |       |         |         |                  |                  |                    |                 |                 |            |                                |                                |                                   |                         |

## Startup-Shutdown Emission Calculations

|          | Emission Rates |                                |                   |                   |                                 |                                  |                                |                    | Emission Rates               |                                              |                  |                                 |                                  |          |                                |                   |                   |                                 |                                  |                                |                    |                         |                                |                    |                                 |                                  |
|----------|----------------|--------------------------------|-------------------|-------------------|---------------------------------|----------------------------------|--------------------------------|--------------------|------------------------------|----------------------------------------------|------------------|---------------------------------|----------------------------------|----------|--------------------------------|-------------------|-------------------|---------------------------------|----------------------------------|--------------------------------|--------------------|-------------------------|--------------------------------|--------------------|---------------------------------|----------------------------------|
| FIN      |                |                                |                   |                   |                                 | (lb/l                            | ır)                            |                    |                              |                                              |                  |                                 |                                  |          |                                |                   |                   |                                 |                                  | (tpy)                          |                    |                         |                                |                    |                                 |                                  |
|          | VOC [6]        | NO <sub>x</sub> <sup>[7]</sup> | CO <sup>[7]</sup> | PM <sup>[7]</sup> | PM <sub>10</sub> <sup>[7]</sup> | PM <sub>2.5</sub> <sup>[7]</sup> | SO <sub>2</sub> <sup>[7]</sup> | NH3 <sup>[7]</sup> | Methanol [6] CO <sub>2</sub> | <sup>7]</sup> CH <sub>4</sub> <sup>[7]</sup> | <sup>[7]</sup> N | N <sub>2</sub> O <sup>[7]</sup> | CO <sub>2</sub> e <sup>[4]</sup> | VOC [8]  | NO <sub>x</sub> <sup>[8]</sup> | CO <sup>[8]</sup> | PM <sup>[8]</sup> | PM <sub>10</sub> <sup>[8]</sup> | PM <sub>2.5</sub> <sup>[8]</sup> | SO <sub>2</sub> <sup>[8]</sup> | NH3 <sup>[8]</sup> | Methanol <sup>[8]</sup> | CO <sub>2</sub> <sup>[8]</sup> | CH4 <sup>[8]</sup> | N <sub>2</sub> O <sup>[8]</sup> | CO <sub>2</sub> e <sup>[4]</sup> |
| BLR-AUX1 | 1.01           | 1.88                           | 5.91              | 1.40              | 1.40                            | 1.40                             | 0.11                           |                    | 21,99                        | 1.73 (                                       | 0.41             | 0.04                            | 22,014.44                        | 0.05     | 0.09                           | 0.28              | 0.07              | 0.07                            | 0.07                             | 5.31E-03                       |                    |                         | 1,055.60                       | 0.02               | 1.99E-03                        | 1,056.69                         |
| H-201    | 0.95           | 4.40                           | 5.89              | 1.31              | 1.31                            | 1.31                             | 0.10                           | 0.68               | 0.24 20,56                   | 4.61 (                                       | 0.39             | 0.04                            | 20,585.84                        | 0.02     | 0.11                           | 0.14              | 0.03              | 0.03                            | 0.03                             | 2.48E-03                       | 0.02               | 5.77E-03                | 493.55                         | 9.30E-03           | 9.30E-04                        | 494.06                           |
| H-202    | 1.40           | 6.51                           | 8.72              | 1.94              | 1.94                            | 1.94                             | 0.15                           | 1.00               | 0.36 30,46                   | 0.88 (                                       | 0.57             | 0.06                            | 30,492.34                        | 0.03     | 0.16                           | 0.21              | 0.05              | 0.05                            | 0.05                             | 3.68E-03                       | 0.02               | 8.55E-03                | 731.06                         | 0.01               | 1.38E-03                        | 731.82                           |
| H-203    | 0.95           | 4.40                           | 5.89              | 1.31              | 1.31                            | 1.31                             | 0.10                           | 0.68               | 0.24 20,56                   | 4.61 0                                       | 0.39             | 0.04                            | 20,585.84                        | 0.02     | 0.11                           | 0.14              | 0.03              | 0.03                            | 0.03                             | 2.48E-03                       | 0.02               | 5.77E-03                | 493.55                         | 9.30E-03           | 9.30E-04                        | 494.06                           |
| H-204    | 1.40           | 6.51                           | 8.72              | 1.94              | 1.94                            | 1.94                             | 0.15                           | 1.00               | 0.36 30,46                   | 0.88 (                                       | 0.57             | 0.06                            | 30,492.34                        | 0.03     | 0.16                           | 0.21              | 0.05              | 0.05                            | 0.05                             | 3.68E-03                       | 0.02               | 8.55E-03                | 731.06                         | 0.01               | 1.38E-03                        | 731.82                           |
| H-590    | 0.63           | 1.16                           | 3.68              | 0.86              | 0.86                            | 0.86                             | 0.07                           |                    | 13,56                        | 9.36 0                                       | 0.26             | 0.03                            | 13,583.38                        | 2.50E-03 | 4.64E-03                       | 0.01              | 3.46E-03          | 3.46E-03                        | 3.46E-03                         | 2.73E-04                       |                    |                         | 54.28                          | 1.02E-03           | 1.02E-04                        | 54.33                            |
| H-591    | 0.63           | 1.16                           | 3.68              | 0.86              | 0.86                            | 0.86                             | 0.07                           |                    | 13,56                        | 9.36 0                                       | 0.26             | 0.03                            | 13,583.38                        | 2.50E-03 | 4.64E-03                       | 0.01              | 3.46E-03          | 3.46E-03                        | 3.46E-03                         | 2.73E-04                       |                    |                         | 54.28                          | 1.02E-03           | 1.02E-04                        | 54.33                            |

## Emissions Summary [9]

| _        |       |          |                 |          |       |       |       |          |       |          |       |          |       |          |       |                |       |       |           |                |       |                |                |          |           |            |
|----------|-------|----------|-----------------|----------|-------|-------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------------|-------|-------|-----------|----------------|-------|----------------|----------------|----------|-----------|------------|
| EIN      | VOC   |          | NO <sub>x</sub> |          | C     | 0     | PI    | м        | PM    | 10       | PM    | 2.5      | SO    |          | N     | H <sub>3</sub> | Met   | hanol | C         | 0 <sub>2</sub> | CI    | H <sub>4</sub> | N <sub>2</sub> | 0        | CO        | 2e         |
|          | lb/hr | tpy      | lb/hr           | tpy      | lb/hr | tpy   | lb/hr | tpy      | lb/hr | tpy      | lb/hr | tpy      | lb/hr | tpy      | lb/hr | tpy            | lb/hr | tpy   | lb/hr     | tpy            | lb/hr | tpy            | lb/hr          | tpy      | lb/hr     | tpy        |
| BLR-AUX1 | 1.01  | 0.75     | 1.88            | 1.72     | 5.91  | 5.40  | 1.40  | 0.47     | 1.40  | 0.47     | 1.40  | 0.47     | 0.11  | 0.10     |       |                |       |       | 21,991.73 | 20,109.24      | 0.41  | 0.38           | 0.04           | 0.04     | 22,014.44 | 20,130.00  |
| H-201    | 1.15  | 5.05     | 4.40            | 12.87    | 5.89  | 21.51 | 1.31  | 2.36     | 1.31  | 2.36     | 1.31  | 2.36     | 0.17  | 0.75     | 1.13  | 4.94           | 0.40  | 1.76  | 34,274.34 | 150,121.62     | 0.65  | 2.83           | 0.06           | 0.28     | 34,309.74 | 150,276.66 |
| H-202    | 1.71  | 7.48     | 6.51            | 19.06    | 8.72  | 31.86 | 1.94  | 3.50     | 1.94  | 3.50     | 1.94  | 3.50     | 0.26  | 1.12     | 1.67  | 7.31           | 0.59  | 2.60  | 50,768.14 | 222,364.44     | 0.96  | 4.19           | 0.10           | 0.42     | 50,820.57 | 222,594.10 |
| H-203    | 1.15  | 5.05     | 4.40            | 12.87    | 5.89  | 21.51 | 1.31  | 2.36     | 1.31  | 2.36     | 1.31  | 2.36     | 0.17  | 0.75     | 1.13  | 4.94           | 0.40  | 1.76  | 34,274.34 | 150,121.62     | 0.65  | 2.83           | 0.06           | 0.28     | 34,309.74 | 150,276.66 |
| H-204    | 1.71  | 7.48     | 6.51            | 19.06    | 8.72  | 31.86 | 1.94  | 3.50     | 1.94  | 3.50     | 1.94  | 3.50     | 0.26  | 1.12     | 1.67  | 7.31           | 0.59  | 2.60  | 50,768.14 | 222,364.44     | 0.96  | 4.19           | 0.10           | 0.42     | 50,820.57 | 222,594.10 |
| H-590    | 0.63  | 2.50E-03 | 1.16            | 4.64E-03 | 3.68  | 0.01  | 0.86  | 3.46E-03 | 0.86  | 3.46E-03 | 0.86  | 3.46E-03 | 0.07  | 2.73E-04 |       |                |       |       | 13,569.36 | 54.28          | 0.26  | 1.02E-03       | 0.03           | 1.02E-04 | 13,583.38 | 54.33      |
| H-591    | 0.63  | 2.50E-03 | 1.16            | 4.64E-03 | 3.68  | 0.01  | 0.86  | 3.46E-03 | 0.86  | 3.46E-03 | 0.86  | 3.46E-03 | 0.07  | 2.73E-04 |       |                |       |       | 13,569.36 | 54.28          | 0.26  | 1.02E-03       | 0.03           | 1.02E-04 | 13,583.38 | 54.33      |

## Notes:

[1] NO<sub>x</sub> and CO emission factors are provided by the vendor.

Process heaters H-201, H-202, H-203, and H-204 routine emission factors are based on a CO concentration of 25 ppmw at 3% O<sub>2</sub>, corrected for stack gas O<sub>2</sub> (1.97%). All other sources' routine and SU/SD factors are based on 50 ppmw at 3% O<sub>2</sub>, corrected for stack gas O<sub>2</sub> (1.97%). VOC and PM:

- Startup emission factors are from AP-42 Sec 1.4, Table 1.4-2. Emission factors from AP-42 are in units of Ib/MMscf; converted to Ib/MMBtu by dividing by the heating value of natural gas (1,020 Btu/scf).

- Routine emission factors (except H-590 and H-591) are based on the VOC and carbon-containing compounds content of the fuel gas. PM is based on AP-42 Section 1.4, Table 1.4-2 (7.6 lb/MMscf) \* Carbon Compound Mol % / Higher Heating Value (Btu/scf).

- Routine emission factors for H-590 and H-591 are from AP-42 Sec 1.4, Table 1.4-2.

SO<sub>2</sub> emission factor is from AP-42 Sec. 1.4, Table 1.4-2, based on 2,000 gr S and converted from lb/MMscf to lb/MMBtu by dividing by the heating value of natural gas (1,020 Btu/scf).

CO<sub>2</sub> EF: Factor for natural gas from Table C-1, 40 CFR Part 98, Subpart C.

CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.

[2] Lb/hr (VOC) = Maximum Design Heat Release (MMBtu/hr) \* Conversion (1,000,000 Btu/MMBtu) / Fuel Gas Heating Value (Btu/scf) / Conversion (385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia) \* Fuel Gas Stream MW (lb/lb-mole) \* Fuel Gas VOC Wt % \* (1 - DRE %)

Lb/hr (Methanol) = Maximum Design Heat Release (MMBtu/hr) \* Conversion (1,000,000 Btu/MMBtu) / Fuel Gas Heating Value (Btu/scf) / Conversion (385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia) \* Fuel Gas Stream MW (lb/lb-mole) \* Fuel Gas Methanol Wt % \* (1 - DRE %)

[3] Lb/hr = Maximum Design Heat Release (MMBtu/hr, Routine) \* Emission Factor (lb/MMBtu)

[4] CO<sub>2</sub>e = [CO<sub>2</sub> emissions × Global Warming Potential (GWP) of CO<sub>2</sub> (1)] + [CH<sub>4</sub> emissions × GWP of CH<sub>4</sub> (25)] + [N<sub>2</sub>O emissions × GWP of N<sub>2</sub>O (298)]

GWPs are from 40 CFR Part 98, Subpart A, Table A-1.

[5] Tpy = Lb/hr \* Maximum Operating Schedule (hr/yr) / 2,000 lb/ton

[6] Lb/hr (SU/SD) is the maximum of:

1. Natural gas emissions: Maximum Design Heat Release (MMBtu/hr) \* Emission Factor (lb/MMBtu)

2. Fuel gas emissions: Maximum Design Heat Release (MMBtu/hr) \* Conversion (1,000,000 Btu/MMBtu) / Fuel Gas Heating Value (Btu/scf) / Conversion (385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia) \* Fuel Gas Stream MW (lb/lb-mole) \* Fuel Gas VOC Wt % or Methanol Wt % \* (1 - DRE %) [7] Lb/hr (SU/SD) is the maximum of:

1. Natural gas emissions: Maximum Design Heat Release (MMBtu/hr) \* Emission Factor (Ib/MMBtu)

2. Fuel gas emissions: Maximum Design Heat Release (MMBtu/hr) \* Emission Factor (Ib/MMBtu)

[8] Tpy (except H-590 and H-591) = Lb/hr (SU/SD) \* Maximum Operating Schedule (hr/yr, SU/SD) / 2,000 lb/ton

Tpy (H-590 and H-591) = {[Maximum Design Heat Release (MMBtu/hr, Average) \* Emission Factor (lb/MMBtu) \* Maximum Operating Schedule (hr/yr, Average)] + [Maximum Design Heat Release (MMBtu/hr, Maximum Operating Schedule (hr/yr, Maximum)]} / 2,000 lb/ton [9] Lb/hr = maximum of routine and SU/SD. Tpy = sum of the worst-case maximum annual operation.

For sources which operate 8,760 hours per year, annual emissions are the maximum of: 1. Routine for 8,760 hrs/yr, and 2. Routine for 8,760 hr/yr + SU/SD hrs/yr + SU/SD emissions. For sources which operate less than 8,760 hrs/yr, annual emissions are the sum of routine + SU/SD.

## Conversions:

2,000 lb/ton 1,000,000 Btu/MMBtu

385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia

## Table E-4 Engine Emissions (EPNs: FW-PUMP1, FW-PUMP2, FW-PUMP3, EG-1, EG-2) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

## **Equipment Properties and Emission Factors**

| EPN      | Power Rating | Maximum Operating<br>Schedule |      |      |      |      | Emission<br>(g/k | Factors <sup>[1]</sup><br>Wh) |                 |        |                 |                  |
|----------|--------------|-------------------------------|------|------|------|------|------------------|-------------------------------|-----------------|--------|-----------------|------------------|
|          | (KVV)        | (hr/yr)                       | VOC  | NOx  | СО   | PM   | PM <sub>10</sub> | PM <sub>2.5</sub>             | SO <sub>2</sub> | CO2    | CH <sub>4</sub> | N <sub>2</sub> O |
| FW-PUMP1 | 500          | 100                           | 4.00 | 4.00 | 3.50 | 0.20 | 0.20             | 0.20                          | 2.41E-03        | 181.05 | 3.41E-03        | 3.41E-04         |
| FW-PUMP2 | 500          | 100                           | 4.00 | 4.00 | 3.50 | 0.20 | 0.20             | 0.20                          | 2.41E-03        | 181.05 | 3.41E-03        | 3.41E-04         |
| FW-PUMP3 | 500          | 100                           | 4.00 | 4.00 | 3.50 | 0.20 | 0.20             | 0.20                          | 2.41E-03        | 181.05 | 3.41E-03        | 3.41E-04         |
| EG-1     | 3,000        | 100                           | 6.40 | 6.40 | 3.50 | 0.20 | 0.20             | 0.20                          | 2.41E-03        | 181.05 | 3.41E-03        | 3.41E-04         |
| EG-2     | 3,000        | 100                           | 6.40 | 6.40 | 3.50 | 0.20 | 0.20             | 0.20                          | 2.41E-03        | 181.05 | 3.41E-03        | 3.41E-04         |

## Emission Calculations

| Linission care |       |                                              |       |      |                  |                   |                 |         |                 |                  |                   |                                            |                 |      |      |                  |                   |                 |       |                 |                  |                   |
|----------------|-------|----------------------------------------------|-------|------|------------------|-------------------|-----------------|---------|-----------------|------------------|-------------------|--------------------------------------------|-----------------|------|------|------------------|-------------------|-----------------|-------|-----------------|------------------|-------------------|
| EPN            |       | Emission Rates <sup>[2],[3]</sup><br>(lb/hr) |       |      |                  |                   |                 |         |                 |                  |                   | Emission Rates <sup>[3],[4]</sup><br>(tpy) |                 |      |      |                  |                   |                 |       |                 |                  |                   |
|                | VOC   | NO <sub>x</sub>                              | СО    | PM   | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | CO2     | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> e | VOC                                        | NO <sub>x</sub> | СО   | PM   | PM <sub>10</sub> | PM <sub>2.5</sub> | SO <sub>2</sub> | CO2   | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> e |
| FW-PUMP1       | 4.41  | 4.41                                         | 3.86  | 0.22 | 0.22             | 0.22              | 2.65E-03        | 199.57  | 3.76E-03        | 3.76E-04         | 199.78            | 0.22                                       | 0.22            | 0.19 | 0.01 | 0.01             | 0.01              | 1.33E-04        | 9.98  | 1.88E-04        | 1.88E-05         | 9.99              |
| FW-PUMP2       | 4.41  | 4.41                                         | 3.86  | 0.22 | 0.22             | 0.22              | 2.65E-03        | 199.57  | 3.76E-03        | 3.76E-04         | 199.78            | 0.22                                       | 0.22            | 0.19 | 0.01 | 0.01             | 0.01              | 1.33E-04        | 9.98  | 1.88E-04        | 1.88E-05         | 9.99              |
| FW-PUMP3       | 4.41  | 4.41                                         | 3.86  | 0.22 | 0.22             | 0.22              | 2.65E-03        | 199.57  | 3.76E-03        | 3.76E-04         | 199.78            | 0.22                                       | 0.22            | 0.19 | 0.01 | 0.01             | 0.01              | 1.33E-04        | 9.98  | 1.88E-04        | 1.88E-05         | 9.99              |
| EG-1           | 42.33 | 42.33                                        | 23.15 | 1.32 | 1.32             | 1.32              | 0.02            | 1197.43 | 0.02            | 2.26E-03         | 1198.67           | 2.12                                       | 2.12            | 1.16 | 0.07 | 0.07             | 0.07              | 7.96E-04        | 59.87 | 1.13E-03        | 1.13E-04         | 59.93             |
| EG-2           | 42.33 | 42.33                                        | 23.15 | 1.32 | 1.32             | 1.32              | 0.02            | 1197.43 | 0.02            | 2.26E-03         | 1198.67           | 2.12                                       | 2.12            | 1.16 | 0.07 | 0.07             | 0.07              | 7.96E-04        | 59.87 | 1.13E-03        | 1.13E-04         | 59.93             |

## Notes:

[1] VOC, NO<sub>x</sub>, CO, and PM emission factors are based on certified factors. Factors for NO<sub>x</sub> and VOC (non-methane hydrocarbons [NMHC]) are provided as NO<sub>x</sub> + NMHC. Emissions are conservatively calculated using the full factor for each. EG-1 and EG-2: 40 CFR §60.4205(b), 40 CFR §60.4202(b)(2), and 40 CFR §1039, Appendix I, Tier 2

FW-PUMP1 through 3: 40 CFR §60.4205(c), 40 CFR Subpart IIII, Table 4

Assumed PM =  $PM_{10} = PM_{2.5}$ .

CO<sub>2</sub> EF: Factor for natural gas from Table C-1, 40 CFR Part 98, Subpart C.

CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.

SO<sub>2</sub> is based on a maximum sulfur content of 15 ppmw S in the fuel.

[2] Lb/hr = Power Rating (kW) \* Emission Factor (g/kWh) / Conversion (453.59 g/lb)

[3] CO<sub>2</sub>e = [CO<sub>2</sub> emissions × Global Warming Potential (GWP) of CO<sub>2</sub> (1)] + [CH<sub>4</sub> emissions × GWP of CH<sub>4</sub> (25)] + [N<sub>2</sub>O emissions × GWP of N<sub>2</sub>O (298)]

GWPs are from 40 CFR Part 98, Subpart A, Table A-1.

[4] Tpy = Lb/hr \* Maximum Operating Schedule (hr/yr) / 2,000 lb/ton

## Conversions:

2,000 lb/ton 453.59 g/lb

### Table E-5 Flare Pilot Emissions (EPNs: FL-1, FL-2, FL-3, FL-4, FL-5) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

|                  |              | Flow per Pilot | Total Pilot |
|------------------|--------------|----------------|-------------|
|                  | NO. OF PHOLS | (MMscf/hr)     | (MMscf/hr)  |
| Flow Rate - FL-1 | 4            | 4.24E-04       | 1.69E-03    |
| Flow Rate - FL-2 | 4            | 4.24E-04       | 1.69E-03    |
| Flow Rate - FL-3 | 3            | 4.24E-04       | 1.27E-03    |
| Flow Rate - FL-4 | 4            | 4.24E-04       | 1.69E-03    |
| Flow Rate - FL-5 | 4            | 4.24E-04       | 1.69E-03    |

Flare

| Pollutant         | Emission Factor <sup>[1]</sup> |          | FL-1 Emissions<br>(Air-Assisted) |                              | FL-2 E<br>(Air-A         | missions<br>ssisted) | FL-3 Ei<br>(Air-A        | missions<br>ssisted) | FL-4 Er<br>(Air-A        | nissions<br>ssisted) | FL-5 Er<br>(Air-A        | nissions<br>ssisted)         |
|-------------------|--------------------------------|----------|----------------------------------|------------------------------|--------------------------|----------------------|--------------------------|----------------------|--------------------------|----------------------|--------------------------|------------------------------|
|                   | Value                          | Units    | lb/hr <sup>[2],[3]</sup>         | tons/year <sup>[3],[4]</sup> | lb/hr <sup>[2],[3]</sup> | tons/year [3],[4]    | lb/hr <sup>[2],[3]</sup> | tons/year [3],[4]    | lb/hr <sup>[2],[3]</sup> | tons/year [3],[4]    | lb/hr <sup>[2],[3]</sup> | tons/year <sup>[3],[4]</sup> |
| VOC               | 0.0054                         | lb/MMBtu | 8.32E-03                         | 0.04                         | 8.32E-03                 | 0.04                 | 6.24E-03                 | 0.03                 | 8.32E-03                 | 0.04                 | 8.32E-03                 | 0.04                         |
| NO <sub>x</sub>   | 0.0641                         | lb/MMBtu | 0.10                             | 0.43                         | 0.10                     | 0.43                 | 0.07                     | 0.32                 | 0.10                     | 0.43                 | 0.10                     | 0.43                         |
| CO                | 0.5496                         | lb/MMBtu | 0.85                             | 3.71                         | 0.85                     | 3.71                 | 0.64                     | 2.78                 | 0.85                     | 3.71                 | 0.85                     | 3.71                         |
| SO <sub>2</sub>   | 0.0006                         | lb/MMBtu | 9.07E-04                         | 3.97E-03                     | 9.07E-04                 | 3.97E-03             | 6.80E-04                 | 2.98E-03             | 9.07E-04                 | 3.97E-03             | 9.07E-04                 | 3.97E-03                     |
| CO <sub>2</sub>   | 116.9773                       | lb/MMBtu | 202.22                           | 885.72                       | 202.22                   | 885.72               | 151.66                   | 664.29               | 202.22                   | 885.72               | 202.22                   | 885.72                       |
| CH <sub>4</sub>   | 0.0022                         | lb/MMBtu | 3.81E-03                         | 0.02                         | 3.81E-03                 | 0.02                 | 2.86E-03                 | 0.01                 | 3.81E-03                 | 0.02                 | 3.81E-03                 | 0.02                         |
| N <sub>2</sub> O  | 0.0002                         | lb/MMBtu | 3.81E-04                         | 1.67E-03                     | 3.81E-04                 | 1.67E-03             | 2.86E-04                 | 1.25E-03             | 3.81E-04                 | 1.67E-03             | 3.81E-04                 | 1.67E-03                     |
| CO <sub>2</sub> e |                                |          | 202.43                           | 886.63                       | 202.43                   | 886.63               | 151.82                   | 664.97               | 202.43                   | 886.63               | 202.43                   | 886.63                       |

#### Notes:

[1] NO<sub>x</sub> and CO factors are from Table 4 of TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000).

Factors are for other, low Btu.

VOC and SO<sub>2</sub> factors from AP-42 Section 1.4, Table 1.4-2. SO<sub>2</sub> factor assumes all sulfur in the fuel is converted to SO<sub>2</sub>.

Factors for VOC and SO<sub>2</sub> are converted from  $lb/10^6$  scf to lb/MMBtu by dividing by 1,020 Btu/scf.

CO<sub>2</sub> EF: Factor for natural gas from Table C-1, 40 CFR Part 98, Subpart C.

CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for natural gas from Table C-2, 40 CFR Part 98, Subpart C.

[2] Calculated according to the following equation: Natural Gas Flow Rate (MMscf/hr) × Emission factor (Ib/MMBtu) × Heating Value of NG (Btu/scf).

VOC, NOx, CO, and SO<sub>2</sub> use lower heating value (910 Btu/scf). CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O use higher heating value (1,020 Btu/scf).

[3] CO<sub>2</sub>e = [CO<sub>2</sub> emissions × Global Warming Potential (GWP) of CO<sub>2</sub> (1)] + [CH<sub>4</sub> emissions × GWP of CH<sub>4</sub> (25)] + [N<sub>2</sub>O emissions × GWP of N<sub>2</sub>O (298)] GWPs are from 40 CFR Part 98, Subpart A, Table A-1.

[4] Calculated according to the following equation: Hourly Emissions (lb/hr) × 8,760 hrs/year ÷ 2,000 lb/ton.

#### Conversions:

2,000 lb/ton 8,760 hrs/year 1,000,000 Btu/MMBtu

## Table E-6 Train 1 Process Gas Flare Startup/Shutdown Emissions (EPN: FL-1) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

|                                      |                          |                | Value             |                   |                   |            |                        |
|--------------------------------------|--------------------------|----------------|-------------------|-------------------|-------------------|------------|------------------------|
| Parameter                            | NG + H2 from<br>R202 1/2 | Process Gas 01 | Process Gas<br>02 | Process Gas<br>03 | Vessel<br>Blowout | Unit       |                        |
|                                      | (Startup)                | (Startup)      | (Startup)         | (Startup)         | (Shutdown)        |            |                        |
| NH <sub>3</sub> DRE                  | 99%                      | 99%            | 99%               | 99%               | 99%               | %          |                        |
| HCN DRE                              | 95%                      | 95%            | 95%               | 95%               | 95%               | %          |                        |
| VOC DRE (C3-)                        | 99%                      | 99%            | 99%               | 99%               | 99%               | %          |                        |
| VOC DRE (C4+)                        | 98%                      | 98%            | 98%               | 98%               | 98%               | %          |                        |
| Stream MW                            | 16.34                    | 16.85          | 12.14             | 14.33             | 9.25              | lb/lb-mole |                        |
|                                      | 2.98                     | 5.54           | 10.47             | 16.20             | 12.56             | MMscf/hr   |                        |
| Dracoss Cas Flow Pata <sup>[1]</sup> | 126,374.31               | 242,221.24     | 329,890.43        | 602,591.81        | 301,753.14        | lb/hr      |                        |
| Process Gas Flow Rate                | 16.39                    | 22.16          | 52.35             | 97.20             | 100.50            | MMscf/yr   |                        |
|                                      | 347.53                   | 484.44         | 824.73            | 1,807.78          | 1,207.01          | tons/yr    |                        |
| NH <sub>3</sub> Wt %                 |                          |                |                   | 0.01%             | 7.91%             | %          |                        |
| Methanol Wt %                        |                          |                |                   |                   | 0.03%             | %          |                        |
| HCN Wt %                             | 0.0008%                  |                |                   |                   |                   | %          |                        |
| VOC Wt % (C3-)                       |                          |                |                   |                   | 0.03%             | %          |                        |
| VOC Wt % (C4+)                       | 3.13%                    |                |                   |                   | 0.37%             | %          |                        |
| CO Wt %                              |                          | 0.08%          | 41.00%            | 0.72%             | 5.60%             | %          |                        |
| CO2 Wt %                             | 1.48%                    | 6.87%          | 5.04%             | 56.72%            | 52.31%            | %          |                        |
| Lower Heating Value 1                | 909.12                   | 483.72         | 277.66            | 154.89            | 290.62            | Btu/scf    | (includes H2, NH3)     |
| Lower Heating Value 2                | 909.12                   | 469.80         | 144.10            | 9.55              | 76.34             | Btu/scf    | (excludes H2, NH3)     |
| Lower Heating Value 3                | 909.12                   | 469.64         | 87.27             | 8.36              | 70.42             | Btu/scf    | (excludes H2, NH3, CO) |
| Event Duration                       | 5.5                      | 4.0            | 5.0               | 6.0               | 8.0               | hrs/event  |                        |
| Annual Events                        | 1                        | 1              | 1                 | 1                 | 1                 | events/yr  |                        |
|                                      |                          |                | 0.39              | 3.86              | 0.20              | MMscf/hr   |                        |
| Supplemental Fuel                    |                          |                | 19,066.27         | 190,194.95        | 9,677.99          | lb/hr      |                        |
| Required <sup>[1],[2]</sup>          |                          |                | 1.93              | 23.14             | 1.57              | MMscf/yr   |                        |
|                                      |                          |                | 47.67             | 570.58            | 38.71             | tons/yr    |                        |

## Purge Gas and Supplemental Fuel Information

| Parameter                              | Value        | Unit       |
|----------------------------------------|--------------|------------|
| Flare Type                             | Air-Assisted |            |
| Purge Gas                              | Nitrogen     |            |
| Purge Gas Flow Rate                    | 0.00636      | MMscf/hr   |
| Supplemental Fuel                      | Natural Gas  |            |
| Supplemental Fuel Lower Heating Value  | 910          | Btu/scf    |
| Supplemental Fuel Higher Heating Value | 1020         | Btu/scf    |
| Supplemental Fuel VOC Content          | 5%           | Wt %       |
| Supplemental Fuel MW                   | 19.00        | lb/lb-mole |
| Supplemental Fuel DRE                  | 98%          |            |

## Flare Emissions

|                  |                 | [3]                                      | NG + H2 fro          | m R202 1/2         | Process              | Gas 01             | Process              | Gas 02             | Process              | Gas 03             | Vessel               | Blowout            |
|------------------|-----------------|------------------------------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|
| Pollutant        | Emissi          | on Factor * ?                            | (Sta                 | rtup)              | (Star                | tup)               | (Sta                 | rtup)              | (Star                | rtup)              | (Shut                | down)              |
|                  | Value           | Units                                    | lb/hr <sup>[4]</sup> | tpy <sup>[5]</sup> |
| VOC              | Pro             | cess gas                                 | 79.15                | 0.22               |                      |                    |                      |                    |                      |                    | 23.44                | 0.09               |
| VOC              | Supple          | emental fuel                             |                      |                    |                      |                    | 19.07                | 0.05               | 190.19               | 0.57               | 9.68                 | 0.04               |
|                  | 0.0641          | lb/MMBtu (thermal,<br>process gas)       | 173.66               | 0.48               | 171.77               | 0.34               | 186.34               | 0.47               | 160.84               | 0.48               | 234.03               | 0.94               |
| NO               | 0.5%            | % (NH <sub>3</sub> )                     |                      |                    |                      |                    |                      |                    | 0.36                 | 1.07E-03           | 119.39               | 0.48               |
| NOχ              | HCN C           | ontribution                              | 1.78                 | 4.89E-03           |                      |                    |                      |                    |                      |                    |                      |                    |
|                  | 0.0641          | lb/MMBtu (thermal,<br>supplemental fuel) |                      | -                  |                      |                    | 22.55                | 0.06               | 224.98               | 0.67               | 11.45                | 0.05               |
|                  | 0.5496          | lb/MMBtu (thermal,<br>process gas)       | 1,488.96             | 4.09               | 1,428.77             | 2.86               | 296.30               | 0.74               | 73.93                | 0.22               | 458.99               | 1.84               |
| CO               | 98%             | % oxidation                              |                      |                    | 4.03                 | 8.05E-03           | 2,705.07             | 6.76               | 87.15                | 0.26               | 337.90               | 1.35               |
|                  | 0.5496          | lb/MMBtu (thermal,<br>supplemental fuel) |                      |                    |                      |                    | 193.37               | 0.48               | 1,929.00             | 5.79               | 98.16                | 0.39               |
| NH <sub>3</sub>  | See table above |                                          |                      |                    |                      |                    |                      |                    | 2.15E-03             | 2.15E-03           | 238.77               | 0.96               |
| Methanol         | See table above |                                          |                      |                    |                      |                    |                      |                    |                      |                    | 1.04                 | 4.18E-03           |
| HCN              | See t           | See table above                          |                      | 1.44E-04           |                      |                    |                      |                    |                      |                    |                      |                    |
|                  | 130.1           | lb/MMBtu (process<br>gas)                | 352,388.37           | 969.07             | 338,539.96           | 677.08             | 196,247.05           | 490.62             | 326,374.15           | 979.12             | 124,739.19           | 498.96             |
| CO <sub>2</sub>  | Pass            | s-through                                | 1,872.11             | 5.15               | 16,642.47            | 33.28              | 16,623.17            | 41.56              | 341,770.26           | 1,025.31           | 157,841.47           | 631.37             |
|                  | 130.1           | lb/MMBtu<br>(supplemental fuel)          |                      |                    |                      |                    | 51,297.68            | 128.24             | 511,718.15           | 1,535.15           | 26,038.58            | 104.15             |
| CH               | 0.0066          | lb/MMBtu (process<br>gas)                | 17.92                | 0.05               | 17.21                | 0.03               | 9.98                 | 0.02               | 16.60                | 0.05               | 6.34                 | 0.03               |
| 6114             | 0.0066          | lb/MMBtu<br>(supplemental fuel)          |                      | -                  |                      |                    | 2.61                 | 6.52E-03           | 26.02                | 0.08               | 1.32                 | 5.30E-03           |
| N-0              | 0.0013          | lb/MMBtu (process<br>gas)                | 3.58                 | 9.85E-03           | 3.54                 | 7.09E-03           | 3.85                 | 9.61E-03           | 3.32                 | 9.96E-03           | 4.83                 | 0.02               |
| N <sub>2</sub> O | 0.0013          | lb/MMBtu<br>(supplemental fuel)          |                      |                    |                      |                    | 0.52                 | 1.30E-03           | 5.20                 | 0.02               | 0.26                 | 1.06E-03           |
| CO-e             | Pro             | cess gas                                 | 355,776.35           | 978.38             | 356,669.11           | 713.34             | 214,265.61           | 535.66             | 669,548.37           | 2,008.65           | 284,178.38           | 1,136.71           |
| 2022             | Supple          | emental fuel                             |                      |                    |                      |                    | 51,518.34            | 128.80             | 513,919.41           | 1,541.76           | 26,150.59            | 104.60             |

#### Table E-6 Train 1 Process Gas Flare Startup/Shutdown Emissions (EPN: FL-1) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

| Emissions Summary |                      |                    |  |  |  |  |  |  |  |
|-------------------|----------------------|--------------------|--|--|--|--|--|--|--|
|                   | FL-1                 | Emissions          |  |  |  |  |  |  |  |
| Pollutant         | lb/hr <sup>[6]</sup> | tpy <sup>[7]</sup> |  |  |  |  |  |  |  |
| VOC               | 190.19               | 0.97               |  |  |  |  |  |  |  |
| NO <sub>x</sub>   | 386.18               | 3.97               |  |  |  |  |  |  |  |
| CO                | 3,194.74             | 24.80              |  |  |  |  |  |  |  |
| NH <sub>3</sub>   | 238.77               | 0.96               |  |  |  |  |  |  |  |
| Methanol          | 1.04                 | 4.18E-03           |  |  |  |  |  |  |  |
| HCN               | 0.05                 | 1.44E-04           |  |  |  |  |  |  |  |
| CO <sub>2</sub>   | 1,179,862.56         | 7,119.07           |  |  |  |  |  |  |  |
| CH <sub>4</sub>   | 42.61                | 0.27               |  |  |  |  |  |  |  |
| N <sub>2</sub> O  | 8.52                 | 0.07               |  |  |  |  |  |  |  |
| CO <sub>2</sub> e | 1,183,467.78         | 7,147.90           |  |  |  |  |  |  |  |

#### Notes:

[1] Process Gas and Supplemental Fuel Flow Rates (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) Process Gas and Supplemental Fuel Flow Rates (MMscf/yr or tons/yr) = Flow Rate (MMscf/hr or lb/hr) x Event Duration (hrs/event) x Annual Events (events/yr) / Conversion (2,000 lb/ton) [2] To determine if supplemental fuel is required and if so, the required volume, solve the following equation for Supplemental Fuel Flow (MMscf/hr):

| 200 Btu _           | $\left( Process \ Gas \ Flow \ \frac{MMscf}{hr} \times Process \ Gas \ LHV \ \frac{Btu}{scf} \right)$ | $+\left(Purge\ Gas\ Flow\ \frac{MMs}{hr}\right)$ | $\frac{f}{d} \times Purge \ Gas \ LHV \frac{Btu}{scf} + (Supp$ | olemental Fuel Flow $\frac{MMscf}{hr}$ | × Supplemental Fuel LHV $\frac{Btu}{scf}$ |
|---------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| $\frac{500}{scf} =$ |                                                                                                       |                                                  |                                                                | . MMscf                                |                                           |

 $(Process Gas Flow + Purge Gas Flow + Supplemental Fuel Flow) \frac{MMscf}{hr}$ 

Solved for Supplemental Fuel Flow (MMscf/hr):

 $Supplemental Fuel Flow \frac{MMscf}{hr} = \left[\frac{Process Gas Flow \frac{MMscf}{hr} \times (300 - Process Gas LHV)\frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV)\frac{Btu}{scf}\right] + \left[\frac{Process Gas LHV}{hr}\right]$  $(Supplemental Fuel LHV - 300) \frac{Btu}{scf}$ 

Supplemental Fuel (MMscf/yr) = Supplemental Fuel (MMscf/hr) x Event Duration (hrs/event) x Annual Events (events/yr) [3] NO<sub>x</sub> (thermal and fuel) and CO factors are from Table 4 of TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000).

CO and thermal NO<sub>x</sub> factors are for other, low Btu.

CO2 EF: Factor for fuel gas from Table C-1, 40 CFR Part 98, Subpart C.

CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for fuel gas from Table C-2, 40 CFR Part 98, Subpart C. CO2e = [CO2 emissions × Global Warming Potential (GWP) of CO2 (1)] + [CH4 emissions × GWP of CH4 (25)] + [N2O emissions × GWP of N2O (298)]

GWPs are from 40 CFR Part 98, Subpart A, Table A-1. [4] VOC (lb/hr, Process Gas) = {Flow Rate (lb/hr) x VOC Wt % (C3-) x (1 - VOC DRE % [C3-])} + {Flow Rate (lb/hr) x VOC Wt % (C4+) x (1 - VOC DRE % [C4+])}

VOC (lb/hr, Supplemental Fuel) = Supplemental Fuel Required (lb/hr) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)] Thermal NO<sub>4</sub>, CO<sub>2</sub> (using EF), CH<sub>4</sub>, N<sub>2</sub>O (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) Uses LHV 1: Thermal NO<sub>X</sub> and N<sub>2</sub>O (for process gas). Uses LHV 2: CO<sub>2</sub>, and CH<sub>4</sub> (for process gas). Uses LHV 3: CO (for process gas).

CO (using EF, lb/hr) = Flow Rate (MMscf/hr) x (1 - CO Wt %) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) Fuel NO<sub>x</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

Nox from HCN (lb/hr) = Flow Rate (lb/hr) x HCN Wt % / MW HCN (22.0253 lb/lb-mole) x (1 lb-mole N / 1 lb-mole HCN) x (1 lb-mole NO2 / 1 lb-mole N) x MW NO2 (46.0055 lb/lb-mole) Assumes all HCN is converted to NO<sub>x</sub> as NO<sub>2</sub>.

CO (lb/hr, portion not converted to CO<sub>2</sub>) = Flow Rate (lb/hr) x CO Wt % x (1 - CO DRE %)

NH<sub>3</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

HCN (lb/hr) = Flow Rate (lb/hr) x HCN Wt % x (1 - HCN DRE %)

CO<sub>2</sub> Pass-through (lb/hr) = CO<sub>2</sub> Wt % x Flow Rate (lb/hr) [5] VOC (tpy, Process Gas) = {Flow Rate (tons/yr) x VOC Wt % (C3-) x (1 - VOC DRE % [C3-])} + {Flow Rate (tons/yr) x VOC Wt % (C4+) x (1 - VOC DRE % [C4+])}

VOC (tpy, Supplemental Fuel) = Supplemental Fuel Required (tons/yr) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)]

Thermal NO<sub>w</sub>, CO<sub>2</sub> (using EF), CH<sub>4</sub>, N<sub>2</sub>O (tpy) = Flow Rate (MMscf/yr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) / Conversion (2,000 lb/ton)

Uses LHV 1: Thermal NO<sub>x</sub> and N<sub>2</sub>O (for process gas). Uses LHV 2: CO<sub>2</sub>, and CH<sub>4</sub> (for process gas). Uses LHV 3: CO (for process gas).

Col (using EF, tpy) = Flow Rate (MMscf/yr) x 14 - CO Wt %) x Conversion (1,000,000 cd/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) / Conversion (2,000 lb/ton) Fuel NO<sub>x</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NO<sub>x</sub> from HCN (tpy) = Flow Rate (tons/yr) x HCN Wt % / MW HCN (27.0253 lb/lb-mole) x (1 lb-mole N / 1 lb-mole HCN) x (1 lb-mole NO<sub>2</sub> / 1 lb-mole N) x MW NO<sub>2</sub> (46.0055 lb/lb-mole)

Assumes all HCN is converted to  $NO_{\chi}$  as  $NO_{2}$ .

CO (tpy, portion not converted to CO<sub>2</sub>) = Flow Rate (tons/yr) x CO Wt % x (1 - CO DRE %)

NH<sub>3</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

HCN (tpy) = Flow Rate (tons/yr) x HCN Wt % x (1 - HCN DRE %) CO, Pass-through (tpy) = CO, Wt % x Flow Rate (tpy)

[6] Maximum emissions from all streams. [7] Sum of emissions from all streams.

Conversions:

2,000 lb/ton

1,000,000 Btu/MMBtu; scf/MMscf 385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 nsia

# Table E-7 Train 1 Ammonia Flare Startup/Shutdown Emissions (EPN: FL-2) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

|                       | Val                                                | ue                           |            |                    |
|-----------------------|----------------------------------------------------|------------------------------|------------|--------------------|
| Parameter             | NH₃ Vapor Purge for<br>NH₃ Refrigeration<br>System | Vessel Blowout<br>(Shutdown) | Unit       |                    |
| NH <sub>3</sub> DRE   | 99%                                                | 99%                          | %          |                    |
| VOC DRE               | 98%                                                | 98%                          | %          |                    |
| Stream MW             | 17.03                                              | 6.28                         | lb/lb-mole |                    |
|                       | 0.0075                                             | 0.5375                       | MMscf/hr   |                    |
| Process Gas Flow Rate | 331.51                                             | 8,753.93                     | lb/hr      |                    |
| [1]                   | 0.06                                               | 4.30                         | MMscf/yr   |                    |
|                       | 1.33                                               | 35.02                        | tons/yr    |                    |
| NH₃ Wt %              | 100.0%                                             | 22.8%                        | %          |                    |
| VOC Wt %              |                                                    | 0.1%                         | %          |                    |
| CO2 Wt %              |                                                    | 0.1%                         | %          |                    |
| Lower Heating Value 1 | 359                                                | 225                          | Btu/scf    | (includes H2, NH3) |
| Lower Heating Value 2 |                                                    | 10.6                         | Btu/scf    | (excludes H2, NH3) |
| Event Duration        | 8                                                  | 8                            | hrs/event  |                    |
| Annual Events         | 1                                                  | 1                            | events/yr  |                    |
|                       | 0.0007                                             | 0.07                         | MMscf/hr   |                    |
| Supplemental Fuel     | 32.86                                              | 3,327.48                     | lb/hr      |                    |
| Required [1],[2]      | 0.01                                               | 0.54                         | MMscf/yr   |                    |
|                       | 0.13                                               | 13.31                        | tons/vr    | 1                  |

## Purge Gas and Supplemental Fuel Information

| Parameter                              | Value        | Unit       |
|----------------------------------------|--------------|------------|
| Flare Type                             | Air-Assisted |            |
| Purge Gas                              | Nitrogen     |            |
| Purge Gas Flow Rate                    | 0.00283      | MMscf/hr   |
| Supplemental Fuel                      | Natural Gas  |            |
| Supplemental Fuel Lower Heating Value  | 910          | Btu/scf    |
| Supplemental Fuel Higher Heating Value | 1020         | Btu/scf    |
| Supplemental Fuel VOC Content          | 5%           | Wt %       |
| Supplemental Fuel MW                   | 19.00        | lb/lb-mole |
| Supplemental Fuel DRE                  | 98%          |            |

## Flare Emissions

| Pollutant         | Emissior | Emission Factor <sup>[3]</sup>               |                      |                    | Vessel Blowout<br>(Shutdown) |          |
|-------------------|----------|----------------------------------------------|----------------------|--------------------|------------------------------|----------|
|                   | Value    | Units                                        | lb/hr <sup>[4]</sup> | tpy <sup>[5]</sup> | lb/hr <sup>[4]</sup>         | tpy [5]  |
| VOC               | Proce    | ess gas                                      |                      |                    | 0.20                         | 8.04E-04 |
| VOC               | Supplem  | ental fuel                                   | 0.03                 | 1.31E-04           | 3.33                         | 0.01     |
|                   | 0.0641   | lb/MMBtu (thermal,<br>process gas)           | 0.17                 | 6.90E-04           | 7.75                         | 0.03     |
| NO <sub>X</sub>   | 0.5%     | % (NH <sub>3</sub> )                         | 1.66                 | 6.63E-03           | 9.99                         | 0.04     |
|                   | 0.0641   | lb/MMBtu (thermal,<br>supplemental fuel)     | 0.04                 | 1.55E-04           | 3.94                         | 0.02     |
| со                | 0.5496   | lb/MMBtu (thermal,<br>process gas)           |                      |                    | 3.12                         | 0.01     |
|                   | 0.5496   | 0.5496 lb/MMBtu (thermal, supplemental fuel) |                      | 1.33E-03           | 33.75                        | 0.13     |
| NH <sub>3</sub>   | See tab  | le above                                     | 3.32                 | 0.01               | 19.98                        | 0.08     |
|                   | Pass-t   | hrough                                       |                      |                    | 12.28                        | 0.05     |
| CO <sub>2</sub>   | 130.1    | 130.1 (supplemental fuel)                    |                      | 0.32               | 7,987.10                     | 31.95    |
| CH <sub>4</sub>   | 0.0066   | lb/MMBtu<br>(supplemental fuel)              | 4.01E-03             | 1.60E-05           | 0.41                         | 1.62E-03 |
| N <sub>2</sub> O  | 0.0013   | lb/MMBtu<br>(supplemental fuel)              | 8.02E-04             | 3.21E-06           | 0.08                         | 3.25E-04 |
| CO <sub>2</sub> e | Supplem  | ental fuel                                   | 79.22                | 0.32               | 8,021.46                     | 32.09    |

**Emissions Summary** 

| Dellutent         | FL-2 Emissions       |                    |  |  |  |
|-------------------|----------------------|--------------------|--|--|--|
| Pollulani         | lb/hr <sup>[6]</sup> | tpy <sup>[7]</sup> |  |  |  |
| VOC               | 3.53                 | 0.01               |  |  |  |
| NO <sub>X</sub>   | 21.68                | 0.09               |  |  |  |
| CO                | 36.87                | 0.15               |  |  |  |
| NH <sub>3</sub>   | 19.98                | 0.09               |  |  |  |
| CO <sub>2</sub>   | 7,999.38             | 32.31              |  |  |  |
| CH <sub>4</sub>   | 0.41                 | 1.64E-03           |  |  |  |
| N <sub>2</sub> O  | 0.08                 | 3.28E-04           |  |  |  |
| CO <sub>2</sub> e | 8,021.46             | 32.40              |  |  |  |

## Table E-7 Train 1 Ammonia Flare Startup/Shutdown Emissions (EPN: FL-2) Ingleside Blue Ammonia

Ingleside Clean Ammonia Partners, LLC

#### Notes:

[1] Process Gas and Supplemental Fuel Flow Rates (Ib/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) Process Gas and Supplemental Fuel Flow Rates (MMscf/yr or tons/yr) = Flow Rate (MMscf/hr or lb/hr) x Event Duration (hrs/event) x Annual Events (events/yr) / Conversion (2,000 lb/ton) [2] To determine if supplemental fuel is required and if so, the required volume, solve the following equation for Supplemental Fuel Flow (MMscf/hr):

$$300 \frac{Btu}{scf} = \frac{\left(Process \ Gas \ Flow \ \frac{MMscf}{hr} \times Process \ Gas \ LHV \frac{Btu}{scf}\right) + \left(Purge \ Gas \ Flow \ \frac{MMscf}{hr} \times Purge \ Gas \ LHV \frac{Btu}{scf}\right) + \left(Supplemental \ Fuel \ Flow \ \frac{MMscf}{hr} \times Supplemental \ Fuel \ LHV \frac{Btu}{scf}\right)}{\left(Process \ Gas \ Flow \ + \ Supplemental \ Fuel \ Flow \ \frac{MMscf}{hr}\right)}$$

 $(Process Gas Flow + Purge Gas Flow + Supplemental Fuel Flow) \frac{MMscf}{hr}$ 

Solved for Supplemental Fuel Flow (MMscf/hr):

 $Supplemental Fuel Flow \frac{MMscf}{hr} = \frac{\left[Process Gas Flow \frac{MMscf}{hr} \times (300 - Process Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - P$ 

Supplemental Fuel (MMscf/yr) = Supplemental Fuel (MMscf/hr) x Event Duration (hrs/event) x Annual Events (events/yr)

[3] NO<sub>x</sub> (thermal and fuel) factors are from Table 4 of TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000).

Thermal NO<sub>x</sub> factors is for other, low Btu.

CO<sub>2</sub> EF: Factor for fuel gas from Table C-1, 40 CFR Part 98, Subpart C.

CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for fuel gas from Table C-2, 40 CFR Part 98, Subpart C.

CO2e = [CO2 emissions × Global Warming Potential (GWP) of CO2 (1)] + [CH4 emissions × GWP of CH4 (25)] + [N2O emissions × GWP of N2O (298)] GWPs are from 40 CFR Part 98, Subpart A, Table A-1. [4] VOC (lb/hr, Process Gas) = Flow Rate (lb/hr) x VOC Wt % x (1 - VOC DRE %)

VOC (lb/hr, Supplemental Fuel) = Supplemental Fuel Required (lb/hr) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)]

Thermal NO<sub>x</sub>, CO, CO<sub>2</sub>, CH<sub>a</sub>, and N<sub>2</sub>O (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (Ib/MMBtu)

Uses LHV 1: Thermal NO<sub>x</sub> (for process gas). Uses LHV 2: CO (for process gas).

Fuel NO<sub>x</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NH<sub>3</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

CO2 Pass-through (lb/hr) = CO2 Wt % x Flow Rate (lb/hr)

[5] VOC (tpy, Process Gas) = Flow Rate (tons/year) x VOC Wt % x (1 - VOC DRE %)

VOC (tpy, Supplemental Fuel) = Supplemental Fuel Required (tpy) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)]

Thermal NO<sub>x</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O (tpy) = Flow Rate (MMscf/yr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) / Conversion (2,000 lb/ton)

Uses LHV 1: Thermal NO<sub>X</sub> (for process gas). Uses LHV 2: CO (for process gas).

Fuel NO<sub>x</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NH<sub>3</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

 $CO_2$  Pass-through (tpy) =  $CO_2$  Wt % x Flow Rate (tpy)

[6] Maximum emissions from: 1. NH<sub>3</sub> Vapor Purge for NH<sub>3</sub> Refrigeration System, and 2. Vessel Blowout.

NO<sub>x</sub> is the maximum of the sum of emissions from either stream

[7] Sum of emissions from NH<sub>3</sub> Vapor Purge for NH<sub>3</sub> Refrigeration System and Vessel Blowout.

#### Conversions:

2,000 lb/ton 1,000,000 Btu/MMBtu; scf/MMscf 385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia

# Table E-8 Ammonia Tank Flare - Startup/Shutdown Emissions (EPN: FL-3) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

|                           | ۱                                                           |                                              |            |  |
|---------------------------|-------------------------------------------------------------|----------------------------------------------|------------|--|
| Parameter                 | NH₃ Tank Purge<br>and Cooling Vent<br>to Flare<br>(Startup) | NH₃ Vent from Tank<br>to Flare<br>(Shutdown) | Unit       |  |
| NH <sub>3</sub> DRE       | 99%                                                         | 99%                                          | %          |  |
| NH <sub>3</sub> MW        | 17.03                                                       | 17.03                                        | lb/lb-mole |  |
| Lower Heating Value       | 359                                                         | 359                                          | Btu/scf    |  |
|                           | 9,700.34                                                    | 9,700.34                                     | lb/hr      |  |
| Deserve Cas Flam Data [1] | 0.22                                                        | 0.22                                         | MMscf/hr   |  |
| Process Gas Flow Rate     | 19.40                                                       | 1,697.56                                     | tpy        |  |
|                           | 0.88                                                        | 76.81                                        | MMscf/yr   |  |
| Event Duration            | 2                                                           | 175                                          | hrs/event  |  |
| Annual Events             | 2                                                           | 2                                            | events/yr  |  |
|                           |                                                             |                                              | MMscf/hr   |  |
| Supplemental Fuel         |                                                             |                                              | lb/hr      |  |
| Required [1],[2]          |                                                             |                                              | MMscf/yr   |  |
|                           |                                                             |                                              | tons/yr    |  |

## Purge Gas and Supplemental Fuel Information

| Parameter                              | Value        | Unit       |
|----------------------------------------|--------------|------------|
| Flare Type                             | Air-Assisted |            |
| Purge Gas                              | Nitrogen     |            |
| Purge Gas Flow Rate                    | 0.00025      | MMscf/hr   |
| Supplemental Fuel                      | Natural Gas  |            |
| Supplemental Fuel Lower Heating Value  | 910          | Btu/scf    |
| Supplemental Fuel Higher Heating Value | 1020         | Btu/scf    |
| Supplemental Fuel VOC Content          | 5%           | Wt %       |
| Supplemental Fuel MW                   | 19.00        | lb/lb-mole |
| Supplemental Fuel DRE                  | 98%          |            |

## Flare Emissions

| Pollutant         | Emission Factor <sup>[3]</sup> |                                    | NH₃ Tank Purge and<br>Flar | d Cooling Vent to<br><sup>.</sup> e | NH₃ Vent from Tank to Flare<br>(Shutdown) |                    |
|-------------------|--------------------------------|------------------------------------|----------------------------|-------------------------------------|-------------------------------------------|--------------------|
|                   | Value                          | Units                              | lb/hr <sup>[4]</sup>       | tpy <sup>[5]</sup>                  | lb/hr <sup>[4]</sup>                      | tpy <sup>[5]</sup> |
| VOC               | Supple                         | emental fuel                       |                            |                                     |                                           |                    |
|                   | 0.0641                         | lb/MMBtu (thermal,<br>process gas) | 5.05                       | 0.01                                | 5.05                                      | 0.88               |
| NO <sub>X</sub>   | 0.5%                           | % (NH₃)                            | 48.50                      | 0.10                                | 48.50                                     | 8.49               |
|                   | 0.0641                         | lb/MMBtu<br>(supplemental fuel)    |                            |                                     |                                           |                    |
| со                | 0.5496                         | lb/MMBtu<br>(supplemental fuel)    |                            |                                     |                                           |                    |
| NH <sub>3</sub>   | 99%                            | % DRE                              | 97.00                      | 0.19                                | 97.00                                     | 16.98              |
| CO <sub>2</sub>   | 130.1                          | lb/MMBtu<br>(supplemental fuel)    |                            |                                     |                                           |                    |
| CH <sub>4</sub>   | 0.0066                         | lb/MMBtu<br>(supplemental fuel)    |                            |                                     |                                           |                    |
| N <sub>2</sub> O  | 0.0013                         | lb/MMBtu<br>(supplemental fuel)    |                            |                                     |                                           |                    |
| CO <sub>2</sub> e | Supple                         | emental fuel                       |                            |                                     |                                           |                    |

## **Emissions Summary**

| Dellusteret       | FL-3 Emissions       |         |  |  |
|-------------------|----------------------|---------|--|--|
| Pollutant         | lb/hr <sup>[6]</sup> | tpy [7] |  |  |
| VOC               |                      |         |  |  |
| NO <sub>x</sub>   | 53.55                | 9.48    |  |  |
| CO                |                      |         |  |  |
| NH <sub>3</sub>   | 97.00                | 17.17   |  |  |
| CO <sub>2</sub>   |                      |         |  |  |
| CH <sub>4</sub>   |                      |         |  |  |
| N <sub>2</sub> O  |                      |         |  |  |
| CO <sub>2</sub> e |                      |         |  |  |

### Table E-8 Ammonia Tank Flare - Startup/Shutdown Emissions (EPN: FL-3) Ingleside Blue Ammonia

Ingleside Clean Ammonia Partners, LLC

#### Notes:

- [1] Process Gas Flow Rate (scf/hr) = Flow Rate (lb/hr) / NH<sub>3</sub> MW (lb/lb-mole) x Conversion (385.3 ft<sup>3</sup>/lb-mole)
- Process Gas Flow Rates (MMscf/yr or tons/yr) = Flow Rate (MMscf/hr or lb/hr) x Event Duration (hrs/event) x Annual Events (events/yr) / Conversion (2,000 lb/ton) Supplemental Fuel Flow Rate (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) Supplemental Fuel Flow Rate (MMscf/yr or tons/yr) = Flow Rate (MMscf/hr or lb/hr) x Event Duration (hrs/event) x Annual Events (events/yr) / Conversion (2,000 lb/ton) [2] To determine if supplemental fuel is required and if so, the required volume, solve the following equation for Supplemental Fuel Flow (MMscf/hr):



 $Supplemental Fuel Flow \frac{MMscf}{hr} = \frac{\left[Process \ Gas \ Flow \ \frac{MMscf}{hr} \times (300 - Process \ Gas \ LHV) \frac{Btu}{scf}\right] + \left[Purge \ Gas \ Flow \ \frac{MMscf}{hr} \times (300 - Purge \ Gas \ LHV) \frac{Btu}{scf}\right]}{(Supplemental Fuel \ LHV - 300) \frac{Btu}{scf}}$ 

Supplemental Fuel (MMscf/yr) = Supplemental Fuel (MMscf/hr) x Event Duration (hrs/event) x Annual Events (events/yr) [3] NO<sub>x</sub> (thermal and fuel) and CO factors are from Table 4 of TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000).

Thermal NO<sub>x</sub> and CO factors are for other, low Btu.

CO<sub>2</sub> EF: Factor for fuel gas from Table C-1, 40 CFR Part 98, Subpart C. CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for fuel gas from Table C-2, 40 CFR Part 98, Subpart C.

CO2e = [CO2 emissions × Global Warming Potential (GWP) of CO2 (1)] + [CH4 emissions × GWP of CH4 (25)] + [N2O emissions × GWP of N2O (298)]

GWPs are from 40 CFR Part 98, Subpart A, Table A-1.

[4] VOC (lb/hr, Supplemental Fuel) = Supplemental Fuel Required (lb/hr) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)] Thermal NO<sub>x</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x

Emission Factor (Ib/MMBtu).

Fuel NO<sub>x</sub> (lb/hr) = Flow Rate (lb/hr) x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NH<sub>3</sub> (lb/hr) = Flow Rate (lb/hr) x (1 - DRE %)

[5] VOC (tpy, Supplemental Fuel) = Supplemental Fuel Required (tpy) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)]

Thermal NO<sub>x</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O (tpy) = Flow Rate (MMscf/yr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (Ib/MMBtu) / Conversion (2,000 lb/ton)

Fuel NO<sub>x</sub> (tpy) = Flow Rate (tons/yr) x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NH<sub>3</sub> (tpy) = Flow Rate (tons/yr) x (1 - DRE %)

[6] Lb/hr = Maximum emissions from: 1, Sum of NH<sub>2</sub> Tank Purge and Cooling Vent to Flare, and 2, Sum of NH<sub>2</sub> Vent from Tank to Flare.

[7] Tpy = Sum of emissions from NH<sub>3</sub> Tank Purge and Cooling Vent to Flare and NH<sub>3</sub> Vent from Tank to Flare.

Conversions:

2.000 lb/ton 1.000.000 Btu/MMBtu, scf/MMscf

385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia

## Table E-9 Train 2 Process Gas Flare Startup/Shutdown Emissions (EPN: FL-4) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

|                             | Value                                 |                             |                                |                                |                                 |            |                        |
|-----------------------------|---------------------------------------|-----------------------------|--------------------------------|--------------------------------|---------------------------------|------------|------------------------|
| Parameter                   | NG + H2 from<br>R202 1/2<br>(Startup) | Process Gas 01<br>(Startup) | Process Gas<br>02<br>(Startup) | Process Gas<br>03<br>(Startup) | Vessel<br>Blowout<br>(Shutdown) | Unit       |                        |
| NH <sub>3</sub> DRE         | 99%                                   | 99%                         | 99%                            | 99%                            | 99%                             | %          |                        |
| HCN DRE                     | 95%                                   | 95%                         | 95%                            | 95%                            | 95%                             | %          |                        |
| VOC DRE (C3-)               | 99%                                   | 99%                         | 99%                            | 99%                            | 99%                             | %          |                        |
| VOC DRE (C4+)               | 98%                                   | 98%                         | 98%                            | 98%                            | 98%                             | %          |                        |
| Stream MW                   | 16.34                                 | 16.85                       | 12.14                          | 14.33                          | 9.25                            | lb/lb-mole |                        |
|                             | 2.98                                  | 5.54                        | 10.47                          | 16.20                          | 12.56                           | MMscf/hr   |                        |
| Des ser Cas Flaur Data [1]  | 126,374.31                            | 242,221.24                  | 329,890.43                     | 602,591.81                     | 301,753.14                      | lb/hr      |                        |
| Process Gas Flow Rate       | 16.39                                 | 22.16                       | 52.35                          | 97.20                          | 100.50                          | MMscf/yr   |                        |
|                             | 347.53                                | 484.44                      | 824.73                         | 1,807.78                       | 1,207.01                        | tons/yr    |                        |
| NH <sub>3</sub> Wt %        |                                       |                             |                                | 0.01%                          | 7.91%                           | %          |                        |
| Methanol Wt %               |                                       |                             |                                |                                | 0.03%                           | %          |                        |
| HCN Wt %                    | 0.0008%                               |                             |                                |                                |                                 | %          |                        |
| VOC Wt % (C3-)              |                                       |                             |                                |                                | 0.03%                           | %          |                        |
| VOC Wt % (C4+)              | 3.13%                                 |                             |                                |                                | 0.37%                           | %          |                        |
| CO Wt %                     |                                       | 0.08%                       | 41.00%                         | 0.72%                          | 5.60%                           | %          |                        |
| CO2 Wt %                    | 1.48%                                 | 6.87%                       | 5.04%                          | 56.72%                         | 52.31%                          | %          |                        |
| Lower Heating Value 1       | 909.12                                | 483.72                      | 277.66                         | 154.89                         | 290.62                          | Btu/scf    | (includes H2, NH3)     |
| Lower Heating Value 2       | 909.12                                | 469.80                      | 144.10                         | 9.55                           | 76.34                           | Btu/scf    | (excludes H2, NH3)     |
| Lower Heating Value 3       | 909.12                                | 469.64                      | 87.27                          | 8.36                           | 70.42                           | Btu/scf    | (excludes H2, NH3, CO) |
| Event Duration              | 5.5                                   | 4.0                         | 5.0                            | 6.0                            | 8.0                             | hrs/event  |                        |
| Annual Events               | 1                                     | 1                           | 1                              | 1                              | 1                               | events/yr  |                        |
|                             | -                                     |                             | 0.39                           | 3.86                           | 0.20                            | MMscf/hr   |                        |
| Supplemental Fuel           |                                       |                             | 19,066.27                      | 190,194.95                     | 9,677.99                        | lb/hr      |                        |
| Required <sup>[1],[2]</sup> |                                       |                             | 1.93                           | 23.14                          | 1.57                            | MMscf/yr   |                        |
|                             |                                       |                             | 47.67                          | 570.58                         | 38.71                           | tons/yr    |                        |

## Purge Gas and Supplemental Fuel Information

| Parameter                              | Value        | Unit       |
|----------------------------------------|--------------|------------|
| Flare Type                             | Air-Assisted |            |
| Purge Gas                              | Nitrogen     |            |
| Purge Gas Flow Rate                    | 0.00636      | MMscf/hr   |
| Supplemental Fuel                      | Natural gas  |            |
| Supplemental Fuel Lower Heating Value  | 910          | Btu/scf    |
| Supplemental Fuel Higher Heating Value | 1020         | Btu/scf    |
| Supplemental Fuel VOC Content          | 5%           | Wt %       |
| Supplemental Fuel MW                   | 19.00        | lb/lb-mole |
| Supplemental Fuel DRE                  | 98%          |            |

## Flare Emissions

|                 | Enviroitan Enator [3] |                                          | NG + H2 from R202 1/2 Proc |                    | Process              | ss Gas 01 Process Gas 02 |                      | Gas 02             | 2 Process Gas 03     |                    | Vessel Blowout       |                    |
|-----------------|-----------------------|------------------------------------------|----------------------------|--------------------|----------------------|--------------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|
| Pollutant       | Emissi                | on Factor * 7                            | (Sta                       | rtup)              | (Star                | tup)                     | (Startup)            |                    | (Star                | rtup)              | (Shutdown)           |                    |
|                 | Value                 | Units                                    | lb/hr <sup>[4]</sup>       | tpy <sup>[5]</sup> | lb/hr <sup>[4]</sup> | tpy <sup>[5]</sup>       | lb/hr <sup>[4]</sup> | tpy <sup>[5]</sup> | lb/hr <sup>[4]</sup> | tpy <sup>[5]</sup> | lb/hr <sup>[4]</sup> | tpy <sup>[5]</sup> |
| VOC             | Pro                   | cess gas                                 | 79.15                      | 0.22               |                      |                          |                      |                    |                      |                    | 23.44                | 0.09               |
| VOC             | Supple                | emental fuel                             |                            |                    |                      |                          | 19.07                | 0.05               | 190.19               | 0.57               | 9.68                 | 0.04               |
|                 | 0.0641                | lb/MMBtu (thermal,<br>process gas)       | 173.66                     | 0.48               | 171.77               | 0.34                     | 186.34               | 0.47               | 160.84               | 0.48               | 234.03               | 0.94               |
| NO              | 0.5%                  | % (NH <sub>3</sub> )                     |                            |                    |                      |                          |                      |                    | 0.36                 | 1.07E-03           | 119.39               | 0.48               |
| NOχ             | HCN C                 | ontribution                              | 1.78                       | 4.89E-03           |                      |                          |                      |                    |                      |                    |                      |                    |
|                 | 0.0641                | lb/MMBtu (thermal,<br>supplemental fuel) |                            | -                  |                      |                          | 22.55                | 0.06               | 224.98               | 0.67               | 11.45                | 0.05               |
|                 | 0.5496                | lb/MMBtu (thermal,<br>process gas)       | 1,488.96                   | 4.09               | 1,428.77             | 2.86                     | 296.30               | 0.74               | 73.93                | 0.22               | 458.99               | 1.84               |
| CO              | 98%                   | % oxidation                              |                            |                    | 4.03                 | 8.05E-03                 | 2,705.07             | 6.76               | 87.15                | 0.26               | 337.90               | 1.35               |
|                 | 0.5496                | lb/MMBtu (thermal,<br>supplemental fuel) |                            |                    |                      |                          | 193.37               | 0.48               | 1,929.00             | 5.79               | 98.16                | 0.39               |
| NH <sub>3</sub> | See t                 | able above                               |                            |                    |                      |                          |                      |                    | 2.15E-03             | 2.15E-03           | 238.77               | 0.96               |
| Methanol        | See t                 | able above                               |                            |                    |                      |                          |                      |                    |                      |                    | 1.04                 | 4.18E-03           |
| HCN             | See t                 | able above                               | 0.05                       | 1.44E-04           |                      |                          |                      |                    |                      |                    |                      |                    |
|                 | 130.1                 | lb/MMBtu (process<br>gas)                | 352,388.37                 | 969.07             | 338,539.96           | 677.08                   | 196,247.05           | 490.62             | 326,374.15           | 979.12             | 124,739.19           | 498.96             |
| CO <sub>2</sub> | Pass                  | s-through                                | 1,872.11                   | 5.15               | 16,642.47            | 33.28                    | 16,623.17            | 41.56              | 341,770.26           | 1,025.31           | 157,841.47           | 631.37             |
|                 | 130.1                 | lb/MMBtu<br>(supplemental fuel)          |                            |                    |                      |                          | 51,297.68            | 128.24             | 511,718.15           | 1,535.15           | 26,038.58            | 104.15             |
| CH.             | 0.0066                | lb/MMBtu (process<br>gas)                | 17.92                      | 0.05               | 17.21                | 0.03                     | 9.98                 | 0.02               | 16.60                | 0.05               | 6.34                 | 0.03               |
| CH <sub>4</sub> | 0.0066                | lb/MMBtu<br>(supplemental fuel)          |                            |                    |                      |                          | 2.61                 | 6.52E-03           | 26.02                | 0.08               | 1.32                 | 5.30E-03           |
| N-O             | 0.0013                | lb/MMBtu (process<br>gas)                | 3.58                       | 9.85E-03           | 3.54                 | 7.09E-03                 | 3.85                 | 9.61E-03           | 3.32                 | 9.96E-03           | 4.83                 | 0.02               |
| 1120            | 0.0013                | lb/MMBtu<br>(supplemental fuel)          |                            |                    |                      |                          | 0.52                 | 1.30E-03           | 5.20                 | 0.02               | 0.26                 | 1.06E-03           |
| 0.0             | Pro                   | cess gas                                 | 355,776.35                 | 978.38             | 356,669.11           | 713.34                   | 214,265.61           | 535.66             | 669,548.37           | 2,008.65           | 284,178.38           | 1,136.71           |
| 2026            | Supple                | emental fuel                             |                            |                    |                      |                          | 51,518.34            | 128.80             | 513,919.41           | 1,541.76           | 26,150.59            | 104.60             |

#### Table E-9 Train 2 Process Gas Flare Startup/Shutdown Emissions (EPN: FL-4) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

| Emissions Summary |                      |           |  |  |  |  |
|-------------------|----------------------|-----------|--|--|--|--|
|                   | FL-1                 | Emissions |  |  |  |  |
| Pollutant         | lb/hr <sup>[6]</sup> | tpy [7]   |  |  |  |  |
| VOC               | 190.19               | 0.97      |  |  |  |  |
| NO <sub>x</sub>   | 386.18               | 3.97      |  |  |  |  |
| CO                | 3,194.74             | 24.80     |  |  |  |  |
| NH <sub>3</sub>   | 238.77               | 0.96      |  |  |  |  |
| Methanol          | 1.04                 | 4.18E-03  |  |  |  |  |
| HCN               | 0.05                 | 1.44E-04  |  |  |  |  |
| CO <sub>2</sub>   | 1,179,862.56         | 7,119.07  |  |  |  |  |
| CH <sub>4</sub>   | 42.61                | 0.27      |  |  |  |  |
| N <sub>2</sub> O  | 8.52                 | 0.07      |  |  |  |  |
| CO <sub>2</sub> e | 1,183,467.78         | 7,147.90  |  |  |  |  |

#### Notes:

[1] Process Gas and Supplemental Fuel Flow Rates (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) Process Gas and Supplemental Fuel Flow Rates (MMscf/yr or tons/yr) = Flow Rate (MMscf/hr or lb/hr) x Event Duration (hrs/event) x Annual Events (events/yr) / Conversion (2,000 lb/ton) [2] To determine if supplemental fuel is required and if so, the required volume, solve the following equation for Supplemental Fuel Flow (MMscf/hr):

| 200 Btu _           | $\left( Process \ Gas \ Flow \ \frac{MMscf}{hr} \times Process \ Gas \ LHV \ \frac{Btu}{scf} \right)$ | $+\left(Purge\ Gas\ Flow\ \frac{MMs}{hr}\right)$ | $\frac{f}{d} \times Purge \ Gas \ LHV \frac{Btu}{scf} + (Supp$ | olemental Fuel Flow $\frac{MMscf}{hr}$ | × Supplemental Fuel LHV $\frac{Btu}{scf}$ |
|---------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| $\frac{500}{scf} =$ |                                                                                                       |                                                  |                                                                | . MMscf                                |                                           |

 $(Process Gas Flow + Purge Gas Flow + Supplemental Fuel Flow) \frac{MMscf}{hr}$ 

Solved for Supplemental Fuel Flow (MMscf/hr):

 $Supplemental Fuel Flow \frac{MMscf}{hr} = \left[\frac{Process Gas Flow \frac{MMscf}{hr} \times (300 - Process Gas LHV)\frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV)\frac{Btu}{scf}\right] + \left[\frac{Process Gas LHV}{hr}\right]$  $(Supplemental Fuel LHV - 300) \frac{Btu}{scf}$ 

Supplemental Fuel (MMscf/yr) = Supplemental Fuel (MMscf/hr) x Event Duration (hrs/event) x Annual Events (events/yr) [3] NO<sub>x</sub> (thermal and fuel) and CO factors are from Table 4 of TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000).

CO and thermal  $NO_x$  factors are for other, low Btu.

CO2 EF: Factor for fuel gas from Table C-1, 40 CFR Part 98, Subpart C.

CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for fuel gas from Table C-2, 40 CFR Part 98, Subpart C. CO2e = [CO2 emissions × Global Warming Potential (GWP) of CO2 (1)] + [CH4 emissions × GWP of CH4 (25)] + [N2O emissions × GWP of N2O (298)]

GWPs are from 40 CFR Part 98, Subpart A, Table A-1. [4] VOC (lb/hr, Process Gas) = {Flow Rate (lb/hr) x VOC Wt % (C3-) x (1 - VOC DRE % [C3-])} + {Flow Rate (lb/hr) x VOC Wt % (C4+) x (1 - VOC DRE % [C4+])}

VOC (lb/hr, Supplemental Fuel) = Supplemental Fuel Required (lb/hr) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)] Thermal NO<sub>4</sub>, CO<sub>2</sub> (using EF), CH<sub>4</sub>, N<sub>2</sub>O (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) Uses LHV 1: Thermal NO<sub>X</sub> and N<sub>2</sub>O (for process gas). Uses LHV 2: CO<sub>2</sub>, and CH<sub>4</sub> (for process gas). Uses LHV 3: CO (for process gas).

CO (using EF, lb/hr) = Flow Rate (MMscf/hr) x (1 - CO Wt %) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) Fuel NO<sub>x</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NOx from HCN (lb/hr) = Flow Rate (lb/hr) x HCN Wt % / MW HCN (27.0253 lb/lb-mole) x (1 lb-mole N / 1 lb-mole HCN) x (1 lb-mole NO 2 / 1 lb-mole N) x MW NO2 (46.0055 lb/lb-mole) Assumes all HCN is converted to NO<sub>x</sub> as NO<sub>2</sub>.

CO (lb/hr, portion not converted to  $CO_2$ ) = Flow Rate (lb/hr) x CO Wt % x (1 - CO DRE %)

NH<sub>3</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

HCN (lb/hr) = Flow Rate (lb/hr) x HCN Wt % x (1 - HCN DRE %)

CO<sub>2</sub> Pass-Hough (Ib/H) = CO<sub>2</sub> Wt % Flow Rate (Ib/H) (5) VOC (tpy, Process Gas) = {Flow Rate (tons/yr) x VOC Wt % (C3-) x (1 - VOC DRE % [C3-])) + {Flow Rate (tons/yr) x VOC Wt % (C4+) x (1 - VOC DRE % [C4+])}

VOC (tpy, Supplemental Fuel) = Supplemental Fuel Required (tons/yr) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)]

Thermal NO<sub>w</sub>, CO<sub>2</sub> (using EF), CH<sub>4</sub>, N<sub>2</sub>O (tpy) = Flow Rate (MMscf/yr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) / Conversion (2,000 lb/ton)

Uses LHV 1: Thermal NO<sub>x</sub> and N<sub>2</sub>O (for process gas). Uses LHV 2: CO<sub>2</sub>, and CH<sub>4</sub> (for process gas). Uses LHV 3: CO (for process gas).

Col (using EF, tpy) = Flow Rate (MMscf/yr) x 14 - CO Wt %) x Conversion (1,000,000 cd/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) / Conversion (2,000 lb/ton) Fuel NO<sub>x</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NO<sub>x</sub> from HCN (tpy) = Flow Rate (tons/yr) x HCN Wt % / MW HCN (27.0253 lb/lb-mole) x (1 lb-mole N / 1 lb-mole HCN) x (1 lb-mole NO<sub>2</sub> / 1 lb-mole N) x MW NO<sub>2</sub> (46.0055 lb/lb-mole)

Assumes all HCN is converted to  $NO_{\chi}$  as  $NO_{2}$ .

CO (tpy, portion not converted to CO<sub>2</sub>) = Flow Rate (tons/yr) x CO Wt % x (1 - CO DRE %)

NH<sub>3</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

HCN (tpy) = Flow Rate (tons/yr) x HCN Wt % x (1 - HCN DRE %) CO, Pass-through (tpy) = CO, Wt % x Flow Rate (tpy)

[6] Maximum emissions from all streams.

[7] Sum of emissions from all streams.

Conversions:

2,000 lb/ton 1,000,000 Btu/MMBtu; scf/MMscf

385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 nsia

# Table E-10 Train 2 Ammonia Flare Startup/Shutdown Emissions (EPN: FL-5) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

|                       | Val                                                | ue                           |            |                    |
|-----------------------|----------------------------------------------------|------------------------------|------------|--------------------|
| Parameter             | NH₃ Vapor Purge for<br>NH₃ Refrigeration<br>System | Vessel Blowout<br>(Shutdown) | Unit       |                    |
| NH <sub>3</sub> DRE   | 99%                                                | 99%                          | %          |                    |
| VOC DRE               | 98%                                                | 98%                          | %          |                    |
| Stream MW             | 17.03                                              | 6.28                         | lb/lb-mole |                    |
|                       | 0.0075                                             | 0.5375                       | MMscf/hr   |                    |
| Process Gas Flow Rate | 331.51                                             | 8,753.93                     | lb/hr      |                    |
| [1]                   | 0.06                                               | 4.30                         | MMscf/yr   |                    |
|                       | 1.33                                               | 35.02                        | tons/yr    |                    |
| NH₃ Wt %              | 100.0%                                             | 22.8%                        | %          |                    |
| VOC Wt %              |                                                    | 0.1%                         | %          |                    |
| CO2 Wt %              |                                                    | 0.1%                         | %          |                    |
| Lower Heating Value 1 | 359                                                | 225                          | Btu/scf    | (includes H2, NH3) |
| Lower Heating Value 2 |                                                    | 10.6                         | Btu/scf    | (excludes H2, NH3) |
| Event Duration        | 8                                                  | 8                            | hrs/event  |                    |
| Annual Events         | 1                                                  | 1                            | events/yr  |                    |
|                       | 0.0007                                             | 0.07                         | MMscf/hr   |                    |
| Supplemental Fuel     | 32.86                                              | 3,327.48                     | lb/hr      |                    |
| Required [1],[2]      | 0.01                                               | 0.54                         | MMscf/yr   |                    |
|                       | 0.13                                               | 13.31                        | tons/vr    |                    |

## Purge Gas and Supplemental Fuel Information

| Parameter                              | Value        | Unit       |
|----------------------------------------|--------------|------------|
| Flare Type                             | Air-Assisted |            |
| Purge Gas                              | Nitrogen     |            |
| Purge Gas Flow Rate                    | 0.00283      | MMscf/hr   |
| Supplemental Fuel                      | Natural gas  |            |
| Supplemental Fuel Lower Heating Value  | 910          | Btu/scf    |
| Supplemental Fuel Higher Heating Value | 1020         | Btu/scf    |
| Supplemental Fuel VOC Content          | 5%           | Wt %       |
| Supplemental Fuel MW                   | 19.00        | lb/lb-mole |
| Supplemental Fuel DRE                  | 98%          |            |

## Flare Emissions

| Pollutant         | Emissior | n Factor <sup>[3]</sup>                  | NH₃ Vapor F<br>Refrigerat<br>(Sta | Purge for NH₃<br>ion System<br>rtup) | Vessel Blowout<br>(Shutdown) |          |  |
|-------------------|----------|------------------------------------------|-----------------------------------|--------------------------------------|------------------------------|----------|--|
|                   | Value    | Units                                    | lb/hr <sup>[4]</sup>              | tpy <sup>[5]</sup>                   | lb/hr <sup>[4]</sup>         | tpy [5]  |  |
| VOC               | Proce    | ess gas                                  |                                   |                                      | 0.20                         | 8.04E-04 |  |
| VOC               | Supplem  | iental fuel                              | 0.03                              | 1.31E-04                             | 3.33                         | 0.01     |  |
|                   | 0.0641   | lb/MMBtu (thermal,<br>process gas)       | 0.17                              | 6.90E-04                             | 7.75                         | 0.03     |  |
| NO <sub>X</sub>   | 0.5%     | % (NH₃)                                  | 1.66                              | 6.63E-03                             | 9.99                         | 0.04     |  |
|                   | 0.0641   | lb/MMBtu (thermal,<br>supplemental fuel) | 0.04                              | 1.55E-04                             | 3.94                         | 0.02     |  |
| 0)                | 0.5496   | lb/MMBtu (thermal,<br>process gas)       | -                                 |                                      | 3.12                         | 0.01     |  |
|                   | 0.5496   | lb/MMBtu (thermal,<br>supplemental fuel) | 0.33                              | 1.33E-03                             | 33.75                        | 0.13     |  |
| NH <sub>3</sub>   | See tab  | le above                                 | 3.32                              | 0.01                                 | 19.98                        | 0.08     |  |
|                   | Pass-t   | hrough                                   |                                   |                                      | 12.28                        | 0.05     |  |
| CO <sub>2</sub>   | 130.1    | lb/MMBtu<br>(supplemental fuel)          | 78.88                             | 0.32                                 | 7,987.10                     | 31.95    |  |
| CH <sub>4</sub>   | 0.0066   | lb/MMBtu<br>(supplemental fuel)          | 4.01E-03                          | 1.60E-05                             | 0.41                         | 1.62E-03 |  |
| N <sub>2</sub> O  | 0.0013   | lb/MMBtu<br>(supplemental fuel)          | 8.02E-04                          | 3.21E-06                             | 0.08                         | 3.25E-04 |  |
| CO <sub>2</sub> e | Supplem  | iental fuel                              | 79.22                             | 0.32                                 | 8,021.46                     | 32.09    |  |

**Emissions Summary** 

| Dellutent         | FL-2 Emissions       |                    |  |  |  |  |  |  |  |
|-------------------|----------------------|--------------------|--|--|--|--|--|--|--|
| Pollutant         | lb/hr <sup>[6]</sup> | tpy <sup>[7]</sup> |  |  |  |  |  |  |  |
| VOC               | 3.53                 | 0.01               |  |  |  |  |  |  |  |
| NO <sub>x</sub>   | 21.68                | 0.09               |  |  |  |  |  |  |  |
| CO                | 36.87                | 0.15               |  |  |  |  |  |  |  |
| NH <sub>3</sub>   | 19.98                | 0.09               |  |  |  |  |  |  |  |
| CO <sub>2</sub>   | 7,999.38             | 32.31              |  |  |  |  |  |  |  |
| CH <sub>4</sub>   | 0.41                 | 1.64E-03           |  |  |  |  |  |  |  |
| N <sub>2</sub> O  | 0.08                 | 3.28E-04           |  |  |  |  |  |  |  |
| CO <sub>2</sub> e | 8,021.46             | 32.40              |  |  |  |  |  |  |  |

## Table E-10 Train 2 Ammonia Flare Startup/Shutdown Emissions (EPN: FL-5) Ingleside Blue Ammonia

Ingleside Clean Ammonia Partners, LLC

#### Notes:

[1] Process Gas and Supplemental Fuel Flow Rates (Ib/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) Process Gas and Supplemental Fuel Flow Rates (MMscf/yr or tons/yr) = Flow Rate (MMscf/hr or lb/hr) x Event Duration (hrs/event) x Annual Events (events/yr) / Conversion (2,000 lb/ton) [2] To determine if supplemental fuel is required and if so, the required volume, solve the following equation for Supplemental Fuel Flow (MMscf/hr):

$$300 \frac{Btu}{scf} = \frac{\left(Process \ Gas \ Flow \ \frac{MMscf}{hr} \times Process \ Gas \ LHV \frac{Btu}{scf}\right) + \left(Purge \ Gas \ Flow \ \frac{MMscf}{hr} \times Purge \ Gas \ LHV \frac{Btu}{scf}\right) + \left(Supplemental \ Fuel \ Flow \ \frac{MMscf}{hr} \times Supplemental \ Fuel \ LHV \frac{Btu}{scf}\right)}{\left(Process \ Gas \ Flow \ + \ Supplemental \ Fuel \ Flow \ \frac{MMscf}{hr}\right)}$$

 $(Process Gas Flow + Purge Gas Flow + Supplemental Fuel Flow) \frac{MMscf}{hr}$ 

Solved for Supplemental Fuel Flow (MMscf/hr):

 $Supplemental Fuel Flow \frac{MMscf}{hr} = \frac{\left[Process Gas Flow \frac{MMscf}{hr} \times (300 - Process Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - Purge Gas LHV) \frac{Btu}{scf}\right] + \left[Purge Gas Flow \frac{MMscf}{hr} \times (300 - P$ 

Supplemental Fuel (MMscf/yr) = Supplemental Fuel (MMscf/hr) x Event Duration (hrs/event) x Annual Events (events/yr)

[3] NO<sub>x</sub> (thermal and fuel) factors are from Table 4 of TCEQ's Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (DRAFT RG-109, Oct 2000).

Thermal NO<sub>x</sub> factors is for other, low Btu.

CO<sub>2</sub> EF: Factor for fuel gas from Table C-1, 40 CFR Part 98, Subpart C.

CH<sub>4</sub> and N<sub>2</sub>O EFs: Factor for fuel gas from Table C-2, 40 CFR Part 98, Subpart C.

CO2e = [CO2 emissions × Global Warming Potential (GWP) of CO2 (1)] + [CH4 emissions × GWP of CH4 (25)] + [N2O emissions × GWP of N2O (298)] GWPs are from 40 CFR Part 98, Subpart A, Table A-1. [4] VOC (lb/hr, Process Gas) = Flow Rate (lb/hr) x VOC Wt % x (1 - VOC DRE %)

VOC (lb/hr, Supplemental Fuel) = Supplemental Fuel Required (lb/hr) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)]

Thermal NO<sub>x</sub>, CO, CO<sub>2</sub>, CH<sub>a</sub>, and N<sub>2</sub>O (lb/hr) = Flow Rate (MMscf/hr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (Ib/MMBtu)

Uses LHV 1: Thermal NO<sub>x</sub> (for process gas). Uses LHV 2: CO (for process gas).

Fuel NO<sub>x</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NH<sub>3</sub> (lb/hr) = Flow Rate (lb/hr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

CO2 Pass-through (lb/hr) = CO2 Wt % x Flow Rate (lb/hr)

[5] VOC (tpy, Process Gas) = Flow Rate (tons/year) x VOC Wt % x (1 - VOC DRE %)

VOC (tpy, Supplemental Fuel) = Supplemental Fuel Required (tpy) x Supplemental Fuel VOC Content (Wt %) x [1 - Supplemental Fuel DRE (%)]

Thermal NO<sub>x</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O (tpy) = Flow Rate (MMscf/yr) x Conversion (1,000,000 scf/MMscf) x Heating Value (Btu/scf) / Conversion (1,000,000 Btu/MMBtu) x Emission Factor (lb/MMBtu) / Conversion (2,000 lb/ton)

Uses LHV 1: Thermal NO<sub>X</sub> (for process gas). Uses LHV 2: CO (for process gas).

Fuel NO<sub>x</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x Fuel Factor (0.5% conversion of fuel to NO<sub>x</sub>)

NH<sub>3</sub> (tpy) = Flow Rate (tons/yr) x NH<sub>3</sub> Wt % x (1 - NH<sub>3</sub> DRE %)

 $CO_2$  Pass-through (tpy) =  $CO_2$  Wt % x Flow Rate (tpy)

[6] Maximum emissions from: 1. NH<sub>3</sub> Vapor Purge for NH<sub>3</sub> Refrigeration System, and 2. Vessel Blowout.

NO<sub>x</sub> is the maximum of the sum of emissions from either stream

[7] Sum of emissions from NH<sub>3</sub> Vapor Purge for NH<sub>3</sub> Refrigeration System and Vessel Blowout.

#### Conversions:

2,000 lb/ton 1,000,000 Btu/MMBtu; scf/MMscf 385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia

Table E-11 Storage Tank Emissions (EPNs: TK-1, TK-2, TK-3A, TK-3B, TK-4A, TK-4B, TK-5A, TK-5B, TK-WW1, TK-WW2, TK-WW3, TK-SW1) Ingleside Blue Ammonia

= Inputs

| 0         |       |         |               |  |
|-----------|-------|---------|---------------|--|
| Ingleside | Clean | Ammonia | Partners, LLC |  |

|                                                      |                     | -                                |            |            |           |           |          |          |          |          |                  |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|---------------------|----------------------------------|------------|------------|-----------|-----------|----------|----------|----------|----------|------------------|----------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                     |                                  | TK-1       | TK-2       | TK-3A     | TK-3B     | TK-4A    | TK-4B    | TK-5A    | TK-5B    | TK-WW1           | TK-WW2   | TK-WW3    | TK-SW1     | Information Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Parameter                                            | Variable            | Units                            | Horizontal | Horizontal | Vertical  | Vertical  | Vertical | Vertical | Vertical | Vertical | Vertical         | Vertical | Vertical  | Vertical   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ANNUAL STANDING STORAGE LOSS, Le                     |                     |                                  | Diesei     | Diesei     | IVIDEA    | MIDEA     | IVIDEA   | IVIDEA   | IVIDEA   | IVIDEA   | www-Equalization |          | www-surge | Contact SW |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Standing Storage Losses                              | L                   | lbs/yr                           | 2.80       | 2.80       | 4.06      | 4.06      | 0.23     | 0.23     | 0.23     | 0.23     | 128.78           | 2.34     | 71.63     | 133.20     | AP-42 Section 7.1, Eqn. (1-2) (Jun 2020): L <sub>5</sub> = 365 V <sub>V</sub> W <sub>V</sub> K <sub>E</sub> K <sub>S</sub>                                                                                                                                                                                                                                                                                                                                                                                  |
| Vapor Space Volume                                   | V <sub>V</sub>      | ft <sup>3</sup>                  | 513.24     | 513.24     | 25,123.29 | 25,123.29 | 1,447.75 | 1,447.75 | 1,447.75 | 1,447.75 | 6,380.37         | 104.72   | 3,324.22  | 6,152.98   | Calculated below - AP-42 Section 7.1 Eqn. (1-3) (Jun 2020): $V_v = (\pi/4 \times D^2) H_{vo}$                                                                                                                                                                                                                                                                                                                                                                                                               |
| Stock Vapor Density                                  | Wv                  | lbs/ft <sup>3</sup>              | 2.64E-04   | 2.64E-04   | 7.79E-06  | 7.79E-06  | 7.79E-06 | 7.79E-06 | 7.79E-06 | 7.79E-06 | 1.12E-03         | 1.12E-03 | 1.12E-03  | 1.12E-03   | Calculated below - AP-42 Section 7.1 Eqn. (1-22) (Jun 2020): W <sub>v</sub> = (M <sub>v</sub> P <sub>VA</sub> )/(R T <sub>v</sub> )                                                                                                                                                                                                                                                                                                                                                                         |
| Vapor Space Expansion Factor                         | K <sub>E</sub>      | day <sup>-1</sup>                | 0.06       | 0.06       | 0.06      | 0.06      | 0.06     | 0.06     | 0.06     | 0.06     | 0.06             | 0.06     | 0.06      | 0.06       | Calculated below -<br>AP-42 Section 7.1 Egn. (1-12) (Jun 2020): $K_{E} = 0.0018\Delta T_{v} = 0.0018 [0.7 (T_{AV} - T_{AN}) + 0.02\alpha]$                                                                                                                                                                                                                                                                                                                                                                  |
| Vented Vapor Saturation Factor                       | Ks                  | Dimensionless                    | 1.00       | 1.00       | 1.00      | 1.00      | 1.00     | 1.00     | 1.00     | 1 00     | 0.87             | 0.96     | 0.93      | 0.93       | Calculated below - AP-42 Section 7.1 Eqn. (1-21) (Jun 2020): K <sub>2</sub> = 1/(1+0.053P <sub>VA</sub> H <sub>VO</sub> )                                                                                                                                                                                                                                                                                                                                                                                   |
| TANK VAPOR SPACE VOLUME, V <sub>v</sub>              |                     | Dimensioniess                    | 1.00       | 1.00       | 1.00      | 1.00      | 1.00     | 1.00     | 1.00     | 1.00     | 0.07             | 0.50     | 0.55      | 0.55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vapor Space Volume                                   | v <sub>v</sub>      | ft <sup>3</sup>                  | 513.24     | 513.24     | 25,123.29 | 25,123.29 | 1,447.75 | 1,447.75 | 1,447.75 | 1,447.75 | 6,380.37         | 104.72   | 3,324.22  | 6,152.98   | AP-42 Section 7.1, Eqn. (1-3) (Jun 2020): $V_v = (\pi/4 \times D^2) H_{vo}$<br>For horizontal tanks, D is calculated from Eqn. (1-14): $D_E = sqrt[(L \times D)/(\pi/4)]$                                                                                                                                                                                                                                                                                                                                   |
| Tank Radius                                          | R <sub>s</sub>      | ft                               | 4          | 4          | 35        | 35        | 10       | 10       | 10       | 10       | 16               | 4        | 16        | 23         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vapor Space Outage                                   | H <sub>vo</sub>     | ft                               | 3.50       | 3.50       | 6.72      | 6.72      | 4.61     | 4.61     | 4.61     | 4.61     | 7.93             | 2.08     | 4.13      | 3.87       | AP-42 Section 7.1, Eqn. (1-16) (Jun 2020): $H_{VO} = H_{S} - H_{L} + H_{RO}$<br>For horizontal tanks, use Eqn. (1-16): $H_{VO} = H_{E}/2$ ; $H_{E}$ is calculated using Eqn. (1/15): $H_{E} = \pi/4 \times D$                                                                                                                                                                                                                                                                                               |
| Shell Height (Vertical) or Shell Length (Horizontal) | Hs or L             | ft                               | 17         | 17         | 30        | 30        | 22       | 22       | 22       | 22       | 38               | 10       | 38        | 34         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Average Liquid Height                                | HL                  | ft                               | 14.85      | 14.85      | 24.00     | 24.00     | 17.60    | 17.60    | 17.60    | 17.60    | 30.40            | 8.00     | 34.20     | 30.60      | TK-1, TK-2: 90% of shell height<br>TK-3A to TK-SW1: 80% of shell height                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Roof Outage                                          | H <sub>BO</sub>     | ft                               | 0.09       | 0.09       | 0.72      | 0.72      | 0.21     | 0.21     | 0.21     | 0.21     | 0.33             | 0.08     | 0.33      | 0.47       | AP-42 Section 7.1, Eqn. (1-17) (Jun 2020): $H_{RO} = 1/3 H_{R}$ (for a cone roof)                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      |                     | 4                                | 0.39       | 0.30       | 2.16      | 2.16      | 0.62     | 0.62     | 0.62     | 0.62     | 1.00             | 0.25     | 1.00      |            | AP-42 Section 7.1, Eqn. (1-18) (Jun 2020): $H_R = S_R R_s$ , used standard value of 0.0625 ft/ft for $S_R$ , and $R_s$ is                                                                                                                                                                                                                                                                                                                                                                                   |
| Tank Root Height                                     | Π <sub>R</sub>      | π                                | 0.28       | 0.28       | 2.16      | 2.16      | 0.63     | 0.63     | 0.63     | 0.63     | 1.00             | 0.25     | 1.00      | 1.41       | the tank shell radius (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| STOCK VAPOR DENSITY, W <sub>V</sub>                  |                     | 2                                |            |            |           |           |          |          |          |          |                  |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Stock Vapor Density                                  | w <sub>v</sub>      | lb/ft°                           | 2.64E-04   | 2.64E-04   | 7.79E-06  | 7.79E-06  | 7.79E-06 | 7.79E-06 | 7.79E-06 | 7.79E-06 | 1.12E-03         | 1.12E-03 | 1.12E-03  | 1.12E-03   | AP-42 Section 7.1, Eqn. (1-22) (Jun 2020): $W_v = (M_v P_{vA})/(R I_v)$                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vapor Molecular Weight                               | $M_{\rm V}$         | lb/lb-mole                       | 130        | 130        | 119.16    | 119.16    | 119.16   | 119.16   | 119.16   | 119.16   | 18.01            | 18.01    | 18.01     | 18.01      | <u>MDEA</u> : https://www.fishersci.com/store/msds?partNumber=AC126720010&productDescription=N-<br>METHYLDIETHANOLAMINE%2C+1KG&vendorld=VN00032119&countryCode=US&language=en, accessed<br>on 12/15/2022<br>Wastewater/storm water: MW of water                                                                                                                                                                                                                                                             |
| Average Daily Liquid Surface Temperature             | TLA.avg             | °R                               | 538.43     | 538.43     | 538.43    | 538.43    | 538.43   | 538.43   | 538.43   | 538.43   | 538.43           | 538.43   | 538.43    | 538.43     | AP-42 Section 7.1, Eqn. (1-28) (Jun 2020): $T_{LA,ave} = 0.4T_{AA} + 0.6T_{B,ave} + 0.005\alpha I_{ave}$                                                                                                                                                                                                                                                                                                                                                                                                    |
| Maximum Daily Liquid Surface Temperature             | T <sub>LA,max</sub> | °R                               | 546.41     | 546.41     | 546.41    | 546.41    | 546.41   | 546.41   | 546.41   | 546.41   | 546.41           | 546.41   | 546.41    | 546.41     | AP-42 Section 7.1, Eqn. (1-28) (Jun 2020): T <sub>LA,max</sub> = 0.4T <sub>AA</sub> + 0.6T <sub>B,max</sub> + 0.005αI <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                        |
| Vapor Pressure Equation Constant - A                 | A                   | Dimensionless                    | 12.101     | 12.101     |           |           |          |          |          |          |                  |          |           |            | Diesel: AP-42 Section 7.1, Table 7.1-2 (Jun 2020), No. 2 Fuel Oil (Diesel).                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vapor Pressure Equation Constant - B                 | В                   | °R                               | 8,907.0    | 8,907.0    |           |           |          |          |          |          |                  |          |           |            | Diesel: AP-42 Section 7.1, Table 7.1-2 (Jun 2020), No. 2 Fuel Oil (Diesel).                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vapor Pressure - Average                             | P <sub>VA,avg</sub> | psia                             | 0.012      | 0.012      | 3.80E-04  | 3.80E-04  | 3.80E-04 | 3.80E-04 | 3.80E-04 | 3.80E-04 | 0.362            | 0.362    | 0.362     | 0.362      | MDEA: Based on 0.026 mbar<br>(https://www.fishersci.com/store/msds?partNumber=AC126720010&productDescription=N-<br>METHYLDIETHANOLAMINE%2C+1KG&vendorId=VN00032119&countryCode=US&language=en, accessed<br>on 12/15/2022)                                                                                                                                                                                                                                                                                   |
| Vapor Pressure - Maximum                             | P <sub>VA,max</sub> | psia                             | 0.015      | 0.015      | 3.80E-04  | 3.80E-04  | 3.80E-04 | 3.80E-04 | 3.80E-04 | 3.80E-04 | 0.814            | 0.814    | 0.814     | 0.814      | Wastewater/storm water: VP of water at 70*F.         Diesel: AP-42 Section 7.1, Eqn. (1-25) (Jun 2020): P <sub>VA,max</sub> = exp [A - (B/T <sub>LA,avg</sub> )]; where T <sub>LA,max</sub> is in °R.         MDEA: Based on 0.026 mbar         (https://www.fishersci.com/store/msds?partNumber=AC126720010&productDescription=N-         METHYLDIETHANOLAMINE%2C+1KG&vendorld=VN00032119&countryCode=US&language=en, accessed         on 12/15/2022)         Wastewater/storm water: VP of water at 95°F. |
| Ideal Gas Constant                                   | R                   | psia ft <sup>°</sup> / lb-mole R | 10.731     | 10.731     | 10.731    | 10.731    | 10.731   | 10.731   | 10.731   | 10.731   | 10.731           | 10.731   | 10.731    | 10.731     | AD 42 Section 7.1 For $(1.20)/(1.0.2020)$ , $T = (T + T + 1)/(2$                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Average Daily Ambient Temperature                    | I <sub>AA</sub>     | <sup>-</sup> R<br>Dimonsionloss  | 531.92     | 531.92     | 531.92    | 531.92    | 531.92   | 531.92   | 531.92   | 531.92   | 531.92           | 531.92   | 531.92    | 531.92     | AP-42 Section 7.1, Eqn. (1-50) (Jun 2020): $T_{AA} = (T_{AX} + T_{AN})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Daily Total Solar Absorptance                        | u <sub>s</sub>      | DImensionless                    | 1.497      | 1.497      | 1.497     | 1.497     | 0.04     | 0.04     | 1.497    | 1.407    | 1.497            | 0.04     | 0.64      | 0.04       | AP-42 Section 7.1 Table 7.1-0 (Jun 2020), average diffuse authinum tank.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Daily Total Solar Insolation - Average               | lavg                | BTU/ft <sup>2</sup> -day         | 2 110      | 2 110      | 2 110     | 2 110     | 2 110    | 2 110    | 2 110    | 2 110    | 2 110            | 2 110    | 2 110     | 2 110      | AP-42 Section 7.1, Table 7.1-7 (Jun 2020), annual value for Corpus Christi, TX                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Liquid Bulk Temperature - Average                    | T <sub>R aug</sub>  | °R                               | 534.79     | 534.79     | 534.79    | 534.79    | 534.79   | 534.79   | 534.79   | 534.79   | 534.79           | 534.79   | 534.79    | 534.79     | AP-42 Section 7.1. Eqn. (1-31) (Jun 2020): $T_{B,aug} = T_{AA} + 0.003\alpha_{s}$                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Liquid Bulk Temperature - Maximum                    | T <sub>B max</sub>  | °R                               | 544.82     | 544.82     | 544.82    | 544.82    | 544.82   | 544.82   | 544.82   | 544.82   | 544.82           | 544.82   | 544.82    | 544.82     | AP-42 Section 7.1, Eqn. (1-31) (Jun 2020): $T_{B,max} = T_{AX} + 0.003 \alpha_s I_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Average Vapor Temperature                            | T <sub>V,avg</sub>  | °R                               | 541.40     | 541.40     | 541.40    | 541.40    | 541.40   | 541.40   | 541.40   | 541.40   | 541.40           | 541.40   | 541.40    | 541.40     | AP-42 Section 7.1, Eqn. (1-33) (Jun 2020): T <sub>V,avg</sub> = 0.7T <sub>AA</sub> + 0.3T <sub>B,avg</sub> + 0.009αl <sub>avg</sub>                                                                                                                                                                                                                                                                                                                                                                         |
| VAPOR SPACE EXPANSION FACTOR, K <sub>E</sub>         |                     |                                  |            |            |           |           |          |          |          |          |                  |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vapor Space Expansion Factor                         | K <sub>E</sub>      | day <sup>-1</sup>                | 0.06       | 0.06       | 0.06      | 0.06      | 0.06     | 0.06     | 0.06     | 0.06     | 0.06             | 0.06     | 0.06      | 0.06       | AP-42 Section 7.1, Eqn. (1-12) (Jun 2020): $K_E = 0.0018\Delta T_V = 0.0018 [0.7 (T_{AX} - T_{AN}) + 0.02\alpha I]$                                                                                                                                                                                                                                                                                                                                                                                         |
| Average Daily Vapor Temperature Range                | ΔT <sub>V</sub>     | °R                               | 31.55      | 31.55      | 31.55     | 31.55     | 31.55    | 31.55    | 31.55    | 31.55    | 31.55            | 31.55    | 31.55     | 31.55      | AP-42 Section 7.1, Eqn. (1-7) for uninsulated tanks (Jun 2020): $\Delta T_V = 0.7\Delta T_A + 0.02\alpha I$                                                                                                                                                                                                                                                                                                                                                                                                 |
| Average Daily Ambient Temperature Range              | ΔT <sub>A</sub>     | °R                               | 17.70      | 17.70      | 17.70     | 17.70     | 17.70    | 17.70    | 17.70    | 17.70    | 17.70            | 17.70    | 17.70     | 17.70      | AP-42 Section 7.1, Eqn. (1-11) (Jun 2020): $\Delta T_A = T_{AX} - T_{AN}$                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Average Daily Maximum Ambient Temperature            | T <sub>AX</sub>     | °R                               | 540.77     | 540.77     | 540.77    | 540.77    | 540.77   | 540.77   | 540.77   | 540.77   | 540.77           | 540.77   | 540.77    | 540.77     | Based on 81.1 Christi, TX, converted to °R by adding 459.67.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Average Daily Minimum Ambient Temperature            | T <sub>AN</sub>     | °R                               | 523.07     | 523.07     | 523.07    | 523.07    | 523.07   | 523.07   | 523.07   | 523.07   | 523.07           | 523.07   | 523.07    | 523.07     | Based on 63.4 Christi, TX. converted to °R by adding 459.67.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tank Paint Solar Absorptance                         | α                   | Dimensionless                    | 0.64       | 0.64       | 0.64      | 0.64      | 0.64     | 0.64     | 0.64     | 0.64     | 0.64             | 0.64     | 0.64      | 0.64       | AP-42 Section 7.1 Table 7.1-6 (Jun 2020), average diffuse aluminum tank.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Daily Total Solar Insolation - Average               | I <sub>avg</sub>    | BTU/ft <sup>2</sup> -day         | 1,497      | 1,497      | 1,497     | 1,497     | 1,497    | 1,497    | 1,497    | 1,497    | 1,497            | 1,497    | 1,497     | 1,497      | AP-42 Section 7.1, Table 7.1-7 (Jun 2020), annual value for Corpus Christi, TX                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VENTED VAPOR SATURATION FACTOR, Ks                   |                     |                                  |            |            |           |           |          |          | <u> </u> |          |                  |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vented Vapor Saturation Factor                       | K <sub>s</sub>      | Dimensionless                    | 1.00       | 1.00       | 1.00      | 1.00      | 1.00     | 1.00     | 1.00     | 1.00     | 0.87             | 0.96     | 0.93      | 0.93       | <b>PR-42 Section 7.1, Eqn. (1-21) (Jun 2020):</b> $R_s = 1/(1+0.053P_{VA}H_{VO})$<br>Diesel: AP-42 Section 7.1 Eqn. (1-25) (Jun 2020): $R_{VA} = evo [\Delta - (R/T)]$ : where T is in <sup>o</sup> R                                                                                                                                                                                                                                                                                                       |
| Vapor Pressure                                       | P <sub>VA</sub>     | psia                             | 0.012      | 0.012      | 3.80E-04  | 3.80E-04  | 3.80E-04 | 3.80E-04 | 3.80E-04 | 3.80E-04 | 0.362            | 0.362    | 0.362     | 0.362      | MDEA: Based on 0.026 mbar<br>(https://www.fishersci.com/store/msds?partNumber=AC126720010&productDescription=N-<br>METHYLDIETHANOLAMINE%2C+1KG&vendorld=VN00032119&countryCode=US&language=en, accessed<br>on 12/15/2022)                                                                                                                                                                                                                                                                                   |
| Vapor Space Outage                                   | H <sub>VO</sub>     | ft                               | 3.50       | 3.50       | 6.72      | 6.72      | 4.61     | 4.61     | 4.61     | 4.61     | 7.93             | 2.08     | 4.13      | 3.87       | Calculated above - AP-42 Section 7.1, Eqn. (1-16) (Jun 2020): $H_{VO} = H_S - H_L + H_{RO}$                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                      |                     |                                  |            |            |           |           |          |          |          |          |                  |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Table E-11

Storage Tank Emissions (EPNs: TK-1, TK-2, TK-3A, TK-3B, TK-4A, TK-4B, TK-5A, TK-5B, TK-WW1, TK-WW2, TK-WW3, TK-SW1)

= Inputs

#### Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

|                                             |                  |                    | TK-1             | TK-2       | TK-3A            | TK-3B            | TK-4A             | TK-4B            | TK-5A    | TK-5B    | TK-WW1            | TK-WW2              | TK-WW3     | TK-SW1     |                                        |
|---------------------------------------------|------------------|--------------------|------------------|------------|------------------|------------------|-------------------|------------------|----------|----------|-------------------|---------------------|------------|------------|----------------------------------------|
| Parameter                                   | Variable         | Units              | Horizontal       | Horizontal | Vertical         | Vertical         | Vertical          | Vertical         | Vertical | Vertical | Vertical          | Vertical            | Vertical   | Vertical   | _                                      |
|                                             |                  |                    | Diesel           | Diesel     | MDEA             | MDEA             | MDEA              | MDEA             | MDEA     | MDEA     | WW - Equalization | WW - Neutralization | WW - Surge | Contact SW |                                        |
| ANNUAL WORKING LOSS, L <sub>W</sub>         | r . –            |                    |                  | L          |                  |                  |                   | 1 4 6 6          | 0.10     |          |                   |                     |            |            |                                        |
| Working Losses                              | L <sub>W</sub>   | lbs/yr             | 0.27             | 0.27       | 0.87             | 0.87             | 1.92              | 1.92             | 0.16     | 0.16     | 4,223.43          | 3,262.54            | 410.27     | 50.68      | AP-42 Section                          |
| Net Working Loss Throughput                 | ų<br>v           | DDI/yr-tank        | 182.86           | 1.027      | 112 160          | 112,979          | 61,548<br>245 529 | 01,548           | 3,693    | 3,693    | 3,095,238         | 3,095,238           | 05,143     | 8,048      | AP-12 Section                          |
|                                             | VQ               | rt /yr             | 1,027            | 1,027      | 112,160          | 112,160          | 345,528           | 345,528          | 20,732   | 20,732   | 17,370,007        | 17,370,007          | 305,712    | 45,179     | AP-42 Section                          |
| Working Loss Turnover Factor                | K.               | Dimonsionloss      | 1                | 1          | 1                | 1                | 1                 | 1                | 1        | 1        | 0.22              | 0.17                | 1          | 1          | for turnovers                          |
| Working Loss furnover factor                | INN INN          | Dimensioniess      | 1                | 1          | 1                | 1                | 1                 | -                | 1        | -        | 0.22              | 0.17                | 1          | 1          | for turnovers                          |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            |                                        |
| Working Loss Product Factor                 | K <sub>P</sub>   | Dimensionless      | 1                | 1          | 1                | 1                | 1                 | 1                | 1        | 1        | 1                 | 1                   | 1          | 1          | Variable defin                         |
| Stock Vapor Density                         | Wv               | lb/ft <sup>3</sup> | 2.64E-04         | 2.64E-04   | 7.79E-06         | 7.79E-06         | 7.79E-06          | 7.79E-06         | 7.79E-06 | 7.79E-06 | 1.12E-03          | 1.12E-03            | 1.12E-03   | 1.12E-03   | Calculated abo                         |
| Vent Setting Correction Factor              | K <sub>B</sub>   | Dimensionless      | 1.00             | 1.00       | 1.00             | 1.00             | 1.00              | 1.00             | 1.00     | 1.00     | 1.00              | 1.00                | 1.00       | 1.00       | AP-42 Section                          |
|                                             |                  | turnovers /        | 1.00             | 1.00       | 4.07             | 4.07             | 54.00             | 54.00            | 2.22     | 2.22     | 600.47            | 40.040.00           | 42.62      | 0.00       | AD 42 Continu                          |
| Number of Turnovers per Year                | N                | year-tank          | 1.00             | 1.00       | 1.07             | 1.07             | 54.99             | 54.99            | 3.30     | 3.30     | 600.17            | 43,212.22           | 12.63      | 0.89       | AP-42 Section                          |
| Annual Sum of the Increases in Liquid Lovel | 74               | fthur              | 6.00             | 6.00       | 20.00            | 20.00            | 1 000 85          | 1 000 85         | 65.00    | 65.00    | 21 606 11         | 245 607 90          | 454 72     | 20.41      | AP-42 Section                          |
| Annual sum of the increases in Liquid Level | ZUQI             | 11/ 91             | 0.99             | 0.99       | 29.99            | 29.99            | 1,099.85          | 1,099.65         | 05.99    | 05.99    | 21,000.11         | 545,097.80          | 454.75     | 20.41      | For horizontal                         |
| Turnover Rate                               | -                | Dimensionless      | 1.00             | 1.00       | 1.00             | 1.00             | 50.00             | 50.00            | 3.00     | 3.00     | 565.22            | 32,500.00           | 12.00      | 0.85       |                                        |
| Tank Capacity                               | -                | bbl                | 182.86           | 182.86     | 19,978.57        | 19,978.57        | 1,230.95          | 1,230.95         | 1,230.95 | 1,230.95 | 5,476.19          | 95.24               | 5,428.57   | 9,523.81   |                                        |
| Tank Diameter                               | D                | ft                 | 9                | 9          | 69               | 69               | 20                | 20               | 20       | 20       | 32                | 8                   | 32         | 45         |                                        |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            | AP-42 Section                          |
| Max Liquid Height                           | H <sub>LX</sub>  | ft                 | 6.99             | 6.99       | 29.00            | 29.00            | 21.00             | 21.00            | 21.00    | 21.00    | 37.00             | 9.00                | 37.00      | 33.00      | and $(\pi/4)$ ×D fo                    |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            | tank                                   |
| Min Liquid Halakt                           | ц                | £4                 | 0.00             | 0.00       | 1.00             | 1.00             | 1.00              | 1.00             | 1.00     | 1.00     | 1.00              | 1.00                | 1.00       | 1.00       | AP-42 Section                          |
| Min Liquid Height                           | n <sub>lN</sub>  | 11                 | 0.00             | 0.00       | 1.00             | 1.00             | 1.00              | 1.00             | 1.00     | 1.00     | 1.00              | 1.00                | 1.00       | 1.00       | minimum liqu                           |
| HOURLY WORKING LOSS                         |                  |                    | •                | •          | •                |                  |                   | •                |          | •        |                   | •                   | •          | •          | •                                      |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            | TCEQ APDG 6                            |
| Maximum Hourly Working Loss                 | LMAX             | lbs/hr-tank        | 0.34             | 0.34       | 0.78             | 0.78             | 0.05              | 0.05             | 0.02     | 0.02     | 5.86              | 5.86                | 105.11     | 105.11     | L <sub>MAX</sub> =[(M <sub>v</sub> x P |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            | Diocol: AP. 42                         |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            | MDFA: https://                         |
| Vapor Molecular Weight                      | Mv               | lb/lb-mole         | 130              | 130        | 119.16           | 119.16           | 119.16            | 119.16           | 119.16   | 119.16   | 18.01             | 18.01               | 18.0       | 18.0       | METUVI DIETI                           |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            | on 12/15/202                           |
|                                             |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            | 011 12/13/202                          |
| Vapor Pressure                              | P                | nsia               | 0.015            | 0.015      | 3 80F-04         | 3 80F-04         | 3 80F-04          | 3 80F-04         | 3 80F-04 | 3 80F-04 | 0.814             | 0.814               | 0.814      | 0.814      | Calculated abo                         |
| Vapor ressure                               | • VA             | psia               | 0.015            | 0.015      | 5.802-04         | 3.802-04         | 3:002-04          | 3.002-04         | 5.002-04 | 5.002-04 | 0.014             | 0.014               | 0.014      | 0.014      | in °R.                                 |
| Ideal Gas Constant                          | R                | (psia-gal) /       | 80 273           | 80 273     | 80 273           | 80 273           | 80 273            | 80 273           | 80 273   | 80 273   | 80 273            | 80 273              | 80 273     | 80 273     |                                        |
|                                             |                  | (lb-mol-°R)        | 001270           | 001270     | 001270           | 00.270           | 001270            | 001270           | 001270   | 001270   | 001270            | 001270              | 001270     | 00.270     |                                        |
| Maximum Temperature                         | T <sub>max</sub> | °R                 | 554.67           | 554.67     | 554.67           | 554.67           | 554.67            | 554.67           | 554.67   | 554.67   | 554.67            | 554.67              | 554.67     | 554.67     | Maximum of 9                           |
| Maximum Fill Rate                           | FR <sub>M</sub>  | gal/hour           | 7,680            | 7,680      | 768,810          | 768,810          | 50,190            | 50,190           | 18,018   | 18,018   | 17,820            | 17,820              | 319,440    | 319,440    |                                        |
| TOTALLOSS                                   | 1                | lhe/ur tonk        | 2.07             | 2.07       | 4.02             | 4.02             | 2.15              | 2.15             | 0.40     | 0.40     | 4 252 21          | 2 264 99            | 481.00     | 193.90     | 1                                      |
| Total Losses                                | LT               | tny/tank           | 5.07<br>1 53F-03 | 1.53F_03   | 4.95<br>2.47E-03 | 4.95<br>2.47E-03 | 2.15<br>1.08F-03  | 2.15<br>1.08F_03 | 1 98F-04 | 1 98F-04 | 4,352.21          | 5,204.00            | 481.90     | 105.05     | AP-42 Section                          |
| Standing Losses                             | L.               | lhs/vr-tank        | 2.80             | 2.80       | 4.06             | 4.06             | 0.23              | 0.23             | 0.23     | 0.23     | 128 78            | 2 34                | 71.63      | 133.20     | AP-42 Section                          |
| Working Losses                              | -\$              | lbs/yr-tank        | 0.27             | 0.27       | 0.87             | 0.87             | 1.92              | 1.92             | 0.16     | 0.16     | 4 223 43          | 3 262 54            | 410.27     | 50.68      | AP-42 Section                          |
|                                             | -w               | 105/ 11 Canic      | 0.27             | 0.27       | 0.07             | 0.07             | 1.52              | 1.52             | 0.10     | 0.10     | 4,220,40          | 3,202.134           | 410.27     | 50.00      | TCEO APDG 6                            |
| Hourly Losses                               | L <sub>max</sub> | lbs/hr-tank        | 0.34             | 0.34       | 0.78             | 0.78             | 0.05              | 0.05             | 0.02     | 0.02     | 5.86              | 5.86                | 105.11     | 105.11     |                                        |
| VOC Losses                                  |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            |                                        |
| VOC Content                                 | VOC Wt %         | %                  | 100%             | 100%       | 100%             | 100%             | 100%              | 100%             | 100%     | 100%     | 0.012%            | 0.012%              | 0.012%     | 0.010%     | T                                      |
| T-++11/001                                  |                  | lbs/yr-tank        | 3.07             | 3.07       | 4.93             | 4.93             | 2.15              | 2.15             | 0.40     | 0.40     | 0.52              | 0.39                | 0.06       | 0.02       | T-4-11                                 |
| Total VOC Losses                            | LT               | tpy/tank           | 1.53E-03         | 1.53E-03   | 2.47E-03         | 2.47E-03         | 1.08E-03          | 1.08E-03         | 1.98E-04 | 1.98E-04 | 2.61E-04          | 1.96E-04            | 2.89E-05   | 9.19E-06   | Total Losses x                         |
| Standing VOC Losses                         | Ls               | lbs/yr-tank        | 2.80             | 2.80       | 4.06             | 4.06             | 0.23              | 0.23             | 0.23     | 0.23     | 0.02              | 2.81E-04            | 8.60E-03   | 0.01       | Standing Loss                          |
| Working VOC Losses                          | Lw               | lbs/yr-tank        | 0.27             | 0.27       | 0.87             | 0.87             | 1.92              | 1.92             | 0.16     | 0.16     | 0.51              | 0.39                | 0.05       | 5.07E-03   | Working Loss                           |
| Hourly VOC Losses                           | L <sub>max</sub> | lbs/hr-tank        | 0.34             | 0.34       | 0.78             | 0.78             | 0.05              | 0.05             | 0.02     | 0.02     | 7.04E-04          | 7.04E-04            | 0.01       | 0.01       | Hourly Losses                          |
| NH <sub>3</sub> Losses                      |                  |                    |                  |            |                  |                  |                   |                  |          |          |                   |                     |            |            |                                        |
| NH <sub>3</sub> Content                     | NH₃ Wt %         | %                  |                  |            |                  |                  |                   |                  |          |          | 0.219%            | 0.219%              | 0.219%     | 0.100%     |                                        |
| Total NH- Losses                            | 1-               | lbs/yr-tank        |                  |            |                  |                  |                   |                  |          |          | 9.53              | 7.15                | 1.06       | 0.18       | Total Losses y                         |
|                                             | -1               | tpy/tank           |                  |            |                  |                  |                   |                  |          |          | 4.77E-03          | 3.58E-03            | 5.28E-04   | 9.19E-05   | . otai 205565 X                        |
| Standing NH <sub>3</sub> Losses             | Ls               | lbs/yr-tank        |                  |            |                  |                  |                   |                  |          |          | 0.28              | 5.13E-03            | 0.16       | 0.13       | Standing Loss                          |
| Working NH <sub>3</sub> Losses              | Lw               | lbs/yr-tank        |                  |            |                  |                  |                   |                  |          |          | 9.25              | 7.14                | 0.90       | 0.05       | Working Loss                           |
| Hourly NH <sub>3</sub> Losses               | L <sub>max</sub> | lbs/hr-tank        |                  |            |                  |                  |                   |                  |          |          | 0.01              | 0.01                | 0.23       | 0.11       | Hourly Losses                          |

## Information Source

n 7.1, Eqn. (1-35) (Jun 2020): L<sub>W</sub> = V<sub>Q</sub> K<sub>N</sub> K<sub>P</sub> W<sub>V</sub> K<sub>B</sub>

n 7.1, Eqn. (1-39) (Jun 2020):  $V_Q = 5.614 Q$ n 7.1, Eqn. (1-35) (Jun 2020): s > 36,  $K_N = (180 + N)/6N$ ; s < 36,  $K_N = 1$ 

nition in AP-42 Section 7.1, Eqn. (1-35) (Jun 2020),  $K_P = 1$  for organic liquids not crude oils.

oove - AP-42 Section 7.1, Eqn. (1-22) (Jun 2020): W<sub>V</sub>= (M<sub>V</sub> P<sub>VA</sub>)/(R T<sub>V</sub>)

n 7.1, Eqn. (1-35) (Jun 2020), default vent settings n 7.1, Eqn. (1-36) (Jun 2020): N = ΣH<sub>OI</sub> / (H<sub>LX</sub> - H<sub>LN</sub>)

n 7.1, Eqn. (1-37) (Jun 2020):  $\Sigma H_{QJ} = (5.614 \text{ Q}) / ((\pi/4) \text{ D}^2)$ al tanks, D is calculated from Eqn. (1-14): D<sub>E</sub> = sqrt[(L×D)/( $\pi/4$ )]

n 7.1, Eqn. (1-37) (Jun 2020) note: if unknown, use 1 ft less than the height for vertical tanks for horizontal tanks, where D is the diameter of a vertical cross-section of the horizontal

n 7.1, Eqn. (1-37) (Jun 2020) note: assume 1 for vertical tanks and 0 for horizontal tanks if uid height is unknown.

6250v3 Estimating Short Term Emission Rates from Fixed Roof Tanks (Feb 2020):  $P_{VA}$ )/(R x T)\*FR<sub>M</sub>]

2 Section 7.1, Table 7.1-2 (Jun 2020), No. 2 Fuel Oil (Diesel). ://www.fishersci.com/store/msds?partNumber=AC126720010&productDescription=N-HANOLAMINE%2C+1KG&vendorId=VN00032119&countryCode=US&language=en, accessed 22

bove - AP-42 Section 7.1, Eqn. (1-25) (Jun 2020): P<sub>VA,max</sub> = exp [A - (B/T<sub>LA,max</sub>)]; where T<sub>LA,max</sub> is

95°F and T<sub>LA,max</sub> (calculated, above)

n 7.1, Eqn. (1-1) (Jun 2020): L<sub>T</sub> = L<sub>S</sub> + L<sub>W</sub>

n 7.1, Eqn. (1-2) (Jun 2020):  $L_s$  = 365 V<sub>V</sub> W<sub>V</sub> K<sub>E</sub> K<sub>s</sub>

i 7.1, Eqn. (1-35) (Jun 2020):  $L_W = V_Q K_N K_P W_V K_B$ 

5250v3 Estimating Short Term Emission Rates from Fixed Roof Tanks (Feb 2020):  $P_{VA}$ )/(R x T)\*FR<sub>M</sub>]

x VOC Wt %

ses x VOC Wt % ses x VOC Wt %

s x VOC Wt %

x NH<sub>3</sub> Wt % ses x NH<sub>3</sub> Wt % ses x NH<sub>3</sub> Wt %

s x NH<sub>3</sub> Wt %

#### Table E-12 CO<sub>2</sub> Vent Emissions (EPNs: VTCO2-1, VTCO2-2, VTCO2-3, VTCO2-4) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

| Provisional Operation<br>Duration Without CCS <sup>[1]</sup> | 180   | days  |
|--------------------------------------------------------------|-------|-------|
| Low Flow                                                     | 26    | Mscfh |
| High Flow                                                    | 5,198 | Mscfh |
| Routine (Low Flow) Hours                                     | 8,760 | hr/yr |
| Startup (High Flow) Hours                                    | 8     | hr/yr |
| CCS Downtime Hours <sup>[2]</sup>                            | 2,160 | hr/yr |

| Emission Calculations |                          |                    |                                       | The first                                                             | 180 days:  |                                                                    | After the first | st 180 days:                                                                   |          |                                               |            |                                       |            |                               |
|-----------------------|--------------------------|--------------------|---------------------------------------|-----------------------------------------------------------------------|------------|--------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------|----------|-----------------------------------------------|------------|---------------------------------------|------------|-------------------------------|
|                       |                          |                    | VTCO2-1                               | , VTCO2-3                                                             | VTCO2-2,   | VTCO2-4                                                            | VTCO2-1,        | VTCO2-3                                                                        | VTCO2-1, | VTCO2-3                                       | VTCO2-2,   | VTCO2-4                               | VTCO2-2,   | VTCO2-4                       |
| Pollutant             | Wt %                     | MW<br>(lb/lb-mole) | Provisiona<br>Oper<br>( <u>withou</u> | Provisional Low Flow Pro<br>Operation<br>(without CCS) <sup>[3]</sup> |            | Provisional High Flow<br>Operation<br>(without CCS) <sup>[4]</sup> |                 | Low Flow (After<br>Provisional Operation)<br>( <u>with</u> CCS) <sup>[5]</sup> |          | Low Flow<br>( <u>with</u> CCS) <sup>[6]</sup> |            | High Flow<br>(Startup) <sup>[7]</sup> |            | Flow<br>ntime) <sup>[8]</sup> |
|                       |                          |                    | lb/hr                                 | tpy                                                                   | lb/hr      | tpy                                                                | lb/hr           | tpy                                                                            | lb/hr    | tpy                                           | lb/hr      | tpy                                   | lb/hr      | tpy                           |
| Ar                    | 0.0013%                  | 39.95              |                                       |                                                                       |            |                                                                    |                 |                                                                                |          |                                               |            |                                       |            |                               |
| CH₄                   | 0.0014%                  | 16.04              | 0.04                                  | 0.09                                                                  | 8.46       | 18.27                                                              | 0.04            | 0.09                                                                           | 0.04     | 0.19                                          | 8.46       | 0.03                                  | 8.46       | 9.14                          |
| CO                    | 0.0010%                  | 28.01              | 0.03                                  | 0.06                                                                  | 5.68       | 12.27                                                              | 0.03            | 0.06                                                                           | 0.03     | 0.12                                          | 5.68       | 0.02                                  | 5.68       | 6.14                          |
| CO <sub>2</sub>       | 99.9807%                 | 44.01              | 2,968.80                              | 6,412.61                                                              | 593,531.96 | 1,282,029.03                                                       | 2,968.80        | 6,590.74                                                                       | 2,968.80 | 13,003.35                                     | 593,531.96 | 2,374.13                              | 593,531.96 | 641,014.51                    |
| H <sub>2</sub>        | 0.0110%                  | 2.02               |                                       |                                                                       |            |                                                                    |                 |                                                                                |          |                                               |            |                                       |            |                               |
| N <sub>2</sub>        | 0.0046%                  | 28.01              |                                       |                                                                       |            |                                                                    |                 |                                                                                |          |                                               |            |                                       |            |                               |
|                       | Stream MW <sup>[9]</sup> | 44.00              |                                       |                                                                       |            |                                                                    |                 |                                                                                |          |                                               |            |                                       |            |                               |

## Emissions Summary<sup>[10]</sup>

| Description                      | EPN     | FIN      |       | со    | C          | 0 <sub>2</sub> | C     | H <sub>4</sub> | CO <sub>2</sub> e <sup>[11]</sup> |              |  |
|----------------------------------|---------|----------|-------|-------|------------|----------------|-------|----------------|-----------------------------------|--------------|--|
| Description                      |         |          | lb/hr | tpy   | lb/hr      | tpy            | lb/hr | tpy            | lb/hr                             | tpy          |  |
| Low Flow CO <sub>2</sub> Vent 1  | VTCO2-1 | VTCO2-1  | 0.03  | 0.12  | 2,968.80   | 13,003.35      | 0.04  | 0.19           | 2,969.86                          | 13,007.98    |  |
| High Flow CO <sub>2</sub> Vent 1 |         |          | F 69  | 12.27 | 502 521 06 | 1 282 020 02   | 9.46  | 10.27          | 502 742 42                        | 1 202 405 01 |  |
| (Provisional Operation)          | VTCO2-2 | VICO2-2P | 5.08  | 12.27 | 595,531.90 | 1,282,029.03   | 8.40  | 18.27          | 595,745.45                        | 1,202,403.01 |  |
| High Flow CO <sub>2</sub> Vent 1 |         | VTCO2-2  | 5.68  | 6.16  | 593,531.96 | 643,388.64     | 8.46  | 9.17           | 593,743.43                        | 643,617.88   |  |
| Low Flow CO <sub>2</sub> Vent 2  | VTCO2-3 | VTCO2-3  | 0.03  | 0.12  | 2,968.80   | 13,003.35      | 0.04  | 0.19           | 2,969.86                          | 13,007.98    |  |
| High Flow CO <sub>2</sub> Vent 2 |         |          | F 69  | 12.27 | F02 F21 06 | 1 292 020 02   | 9.46  | 10.27          | 502 742 42                        | 1 202 405 01 |  |
| (Provisional Operation)          | VTCO2-4 | VICO2-4P | 5.08  | 12.27 | 593,531.90 | 1,282,029.03   | 8.40  | 18.27          | 595,745.45                        | 1,282,485.81 |  |
| High Flow CO <sub>2</sub> Vent 2 |         | VTCO2-4  | 5.68  | 6.16  | 593,531.96 | 643,388.64     | 8.46  | 9.17           | 593,743.43                        | 643,617.88   |  |

#### Notes:

[1] Provisional operation duration without CCS is limited to the first 180 days after startup. CCS infrastructure is operated by a third party.

[2] CCS downtime flow and duration occur when the CCS infrastructure is down. The duration is based on 90 days per year.

[3] <u>VTCO2-1</u>, VTCO2-3: Provisional Operation (<u>without</u> CCS) (lb/hr) = Low Flow (Mscfh) x Conversion (1,000 scf/Mscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) x Pollutant Wt % <u>VTCO2-1</u>, VTCO2-3: Provisional Operation (<u>without</u> CCS) (tpy) = Provisional Operation (lb/hr) x Provisional Operation Duration Without CCS (days) x Conversion (24 hr/day) / Conversion (2,000 lb/ton)

[4] <u>VTCO2-2, VTCO2-4</u>: Provisional Operation (<u>without</u> CCS) (lb/hr) = High Flow (Mscfh) x Conversion (1,000 scf/Mscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) x Pollutant Wt % <u>VTCO2-2, VTCO2-4</u>: Provisional Operation (<u>without</u> CCS) (tpy) = Provisional Operation (lb/hr) x Provisional Operation Duration Without CCS (days) x Conversion (24 hr/day) / Conversion (2,000 lb/ton)

[5] Low Flow (After Provisional Operation) (lb/hr) = Low Flow (Mscfh) x Conversion (1,000 scf/Mscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) x Pollutant Wt %

Low Flow (After Provisional Operation) (tpy) = Low Flow Emissions (lb/hr) x (365 days/yr - Provisional Operation Duration Without CCS (days) x Conversion (24 hr/day) / Conversion (2,000 lb/ton) [6] Low Flow (lb/hr) = Low Flow (Mscfh) x Conversion (1,000 scf/Mscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) x Pollutant Wt %

Low Flow (tpy) = Low Flow Emissions (lb/hr) x Routine (Low Flow) Hours (hr/yr) / Conversion (2,000 lb/ton)

[7] High Flow (Startup) (lb/hr) = High Flow (Mscfh) x Conversion (1,000 scf/Mscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) x Pollutant Wt % High Flow (Startup) (tpy) = High Flow (Startup) Emissions (lb/hr) x Startup (High Flow) Hours (hr/yr) / Conversion (2,000 lb/ton)

[8] High Flow (CCS Downtime) (lb/hr) = High Flow (Mscfh) x Conversion (1,000 scf/Mscf) / Conversion (385.3 ft<sup>3</sup>/lb-mole) x Stream MW (lb/lb-mole) x Pollutant Wt % High Flow (CCS Downtime) (tpy) = High Flow (CCS Downtime) Emissions (lb/hr) x CCS Downtime Hours (hr/yr) / Conversion (2,000 lb/ton)

[9] Stream MW is the sum of each pollutant wt % x pollutant MW.

Table E-12 CO<sub>2</sub> Vent Emissions (EPNs: VTCO2-1, VTCO2-2, VTCO2-3, VTCO2-4) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

[10] Short-term emissions (lb/hr) = maximum of emissions from all operating scenarios for each set of vents.

VTC02-1, VTC02-3: Annual (tpy) = maximum of: 1. Sum of Provisional Low Flow Operation (without CCS) + Low Flow (After Provisional Operation) (with CCS), and 2. Low Flow (with CCS).

VTCO2-2, VTCO2-4: Annual (tpy) = maximum of: 1. Provisional High Flow Operation (without CCS), and 2. Sum of High Flow (Startup) + High Flow (CCS Downtime).

[11] CO<sub>2</sub>e = [CO<sub>2</sub> emissions × Global Warming Potential (GWP) of CO<sub>2</sub> (1)] + [CH<sub>4</sub> emissions × GWP of CH<sub>4</sub> (25)]

GWPs are from 40 CFR Part 98, Subpart A, Table A-1.

Conversions:

385.3 ft<sup>3</sup>/lb-mole at 68°F and 14.7 psia 1,000 scf/Mscf 2,000 lb/ton 8,760 hr/yr 24 hr/day

## Table E-13 Fugitive Emissions (EPN: FUG) Ingleside Blue Ammonia Ingleside Clean Ammonia Partners, LLC

| EDN | Source Name     | Prop     | bane     | СО       |      | NH <sub>3</sub> |          | H <sub>2</sub> | S        | C     | 0 <sub>2</sub> | С     | H <sub>4</sub> | CO    | 0 <sub>2</sub> e |
|-----|-----------------|----------|----------|----------|------|-----------------|----------|----------------|----------|-------|----------------|-------|----------------|-------|------------------|
| Ern | Source Name     | lb/hr    | tpy      | lb/hr    | tpy  | lb/hr           | tpy      | lb/hr          | tpy      | lb/hr | tpy            | lb/hr | tpy            | lb/hr | tpy              |
| FUG | Natural Gas     | 2.02E-03 | 8.87E-03 |          |      |                 |          |                |          |       |                |       | 0.89           |       | 22.16            |
| FUG | CO2             |          |          |          |      |                 |          |                |          |       | 1.29           |       |                |       | 1.29             |
| FUG | Ammonia (Pure)  |          |          |          |      | 0.96            | 4.22     |                |          |       |                |       |                |       |                  |
| FUG | Feed Inlet      | 0.02     | 0.10     |          |      |                 |          |                |          |       | 0.04           |       | 2.49           |       | 62.26            |
| FUG | Reforming       | 0.03     | 0.13     | 0.01     | 0.06 | 1.95E-04        | 8.54E-04 | 4.40E-04       | 1.93E-03 |       | 0.10           |       | 4.76           |       | 119.02           |
| FUG | Shift           |          |          | 0.62     | 2.70 | 5.85E-04        | 2.56E-03 | 3.06E-04       | 1.34E-03 |       | 2.19           |       | 0.06           |       | 3.73             |
| FUG | OASE            |          |          | 0.49     | 2.13 | 1.02E-03        | 4.47E-03 | 6.23E-03       | 0.03     |       | 8.79           |       | 0.19           |       | 13.49            |
| FUG | NWU Compression |          |          | 1.08     | 4.72 | 0.03            | 0.15     | 0.03           | 0.15     |       | 1.57E-03       |       | 5.09           |       | 127.26           |
| FUG | Loop            |          |          |          |      | 0.09            | 0.38     |                |          |       |                |       |                |       |                  |
| FUG | Refrigeration   |          |          |          |      | 0.09            | 0.41     |                |          |       |                |       |                |       |                  |
| FUG | Fire Heater     | 0.02     | 0.09     | 2.48E-03 | 0.01 |                 |          |                |          |       | 0.06           |       | 3.09           |       | 77.29            |
| FUG | Stripper        |          |          |          |      | 0.04            | 0.16     | 0.16           | 0.69     |       | 0.79           |       |                |       | 0.79             |
|     | Totals          | 0.08     | 0.34     | 2.20     | 9.62 | 1.22            | 5.33     | 0.20           | 0.87     |       | 13.26          |       | 16.56          |       | 427.28           |

### Notes:

Emissions estimates as calculated by the TCEQ fugitive emissions workbook are based on current estimated piping component counts

# Summary Sheet This worksheet displays the total emission rates for all tabs. It should be reviewed after completing the necessary number of calculation tabs. Emissions from compounds considered inert or not considered contaminants are set to zero.

| Calculation Sheet Name | EPN | Total Emission<br>Rate (hourly lbs/hr)<br>(excluding GHG / Inert<br>Not a Contaminant) | Total Emission<br>Rate (annual, tpy)<br>/ (excluding GHG / Inert<br>Not a Contaminant) | Total VOC<br>Emission Rate (hourly,<br>Ibs/hr) | Total VOC<br>Emission Rate (annual,<br>tpy) | Total Inorganic<br>, Emission Rate (hourly,<br>Ibs/hr) | Total Inorganic<br>Emission Rate (annual<br>tpy) | Total Exempt Solvent<br>Emission Rate (hourly<br>Ibs/hr) | Total Exempt Solvent<br>, Emission Rate (annual,<br>tpy) | Total GHG Emission<br>Rate (tpy, mass basis) | Total GHG Emission Rate<br>(tpy, CO <sub>2</sub> e) |
|------------------------|-----|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|
| Fug (1)                | FUG | 0.00                                                                                   | 0.01                                                                                   | 0.00                                           | 0.01                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.89                                         | 22.16                                               |
| Fug (2)                | FUG | 0.00                                                                                   | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 1.29                                         | 1.29                                                |
| Fug (3)                | FUG | 0.96                                                                                   | 4.22                                                                                   | 0.00                                           | 0.00                                        | 0.96                                                   | 4.22                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (4)                | FUG | 0.02                                                                                   | 0.10                                                                                   | 0.02                                           | 0.10                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 2.53                                         | 62.26                                               |
| Fug (5)                | FUG | 0.05                                                                                   | 0.20                                                                                   | 0.03                                           | 0.13                                        | 0.01                                                   | 0.06                                             | 0.00                                                     | 0.00                                                     | 4.86                                         | 119.02                                              |
| Fug (6)                | FUG | 0.62                                                                                   | 2.70                                                                                   | 0.00                                           | 0.00                                        | 0.62                                                   | 2.70                                             | 0.00                                                     | 0.00                                                     | 2.25                                         | 3.73                                                |
| Fug (7)                | FUG | 0.49                                                                                   | 2.16                                                                                   | 0.00                                           | 0.00                                        | 0.49                                                   | 2.16                                             | 0.00                                                     | 0.00                                                     | 8.98                                         | 13.49                                               |
| Fug (8)                | FUG | 1.15                                                                                   | 5.02                                                                                   | 0.00                                           | 0.00                                        | 1.15                                                   | 5.02                                             | 0.00                                                     | 0.00                                                     | 5.09                                         | 127.26                                              |
| Fug (9)                | FUG | 0.09                                                                                   | 0.38                                                                                   | 0.00                                           | 0.00                                        | 0.09                                                   | 0.38                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (10)               | FUG | 0.09                                                                                   | 0.41                                                                                   | 0.00                                           | 0.00                                        | 0.09                                                   | 0.41                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (11)               | FUG | 0.02                                                                                   | 0.10                                                                                   | 0.02                                           | 0.09                                        | 0.00                                                   | 0.01                                             | 0.00                                                     | 0.00                                                     | 3.15                                         | 77.29                                               |
| Fug (12)               | FUG | 0.19                                                                                   | 0.85                                                                                   | 0.00                                           | 0.00                                        | 0.19                                                   | 0.85                                             | 0.00                                                     | 0.00                                                     | 0.79                                         | 0.79                                                |
| Fug (13)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (14)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (15)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (16)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (17)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (18)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (19)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (20)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (21)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (22)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (23)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (24)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Fug (25)               |     | 0 0.00                                                                                 | 0.00                                                                                   | 0.00                                           | 0.00                                        | 0.00                                                   | 0.00                                             | 0.00                                                     | 0.00                                                     | 0.00                                         | 0.00                                                |
| Total                  |     | 3.69                                                                                   | 16.16                                                                                  | 0.08                                           | 0.34                                        | 3.61                                                   | 15.82                                            | 0.00                                                     | 0.00                                                     | 29.82                                        | 427.28                                              |

## Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Natural Gas

If yes, provide justification for the selected reduction credit. Note: Facilities subject to fugitive emission monitoring under 30 TAC §§115.324(1)(C) and 354(1)(A) are required to monitor process drains on an annual basis. A 75% reduction credit may be applied for annual monitoring of process drains at a leak threshold of 500 ppmv provided the drain is designed in such a manner that repairs to leaking drains can be achieved. For example, flushing a water seal on a leaking process drain would constitute repair, so a 75% reduction credit may be applied. Similarly, a 95% reduction credit can be applied for quarterly monitoring of drains if repairs to the

leaking drains can be completed.

| I. General Information                                      |                                       |  |  |  |  |  |
|-------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| Company name                                                | Ingleside Clean Ammonia Partners, LLC |  |  |  |  |  |
| Permit number                                               | To be assigned                        |  |  |  |  |  |
| Source name                                                 | Natural Gas                           |  |  |  |  |  |
| Emission Point Number (EPN)                                 | FUG                                   |  |  |  |  |  |
| Preparation date                                            | 8/18/2023                             |  |  |  |  |  |
| I acknowledge that I am submitting an authorized TCEQ       | Yes                                   |  |  |  |  |  |
| application workbook and any necessary attachments.         |                                       |  |  |  |  |  |
| Except for inputting the requested data and adjusting row   |                                       |  |  |  |  |  |
| height and column width, I have not changed the TCEQ        |                                       |  |  |  |  |  |
| application workbook in any way, including but not          |                                       |  |  |  |  |  |
| limited to changing formulas, formatting, content, or       |                                       |  |  |  |  |  |
| protections.                                                |                                       |  |  |  |  |  |
|                                                             |                                       |  |  |  |  |  |
| II. Industry, Pollutant Type and Emission Factors           |                                       |  |  |  |  |  |
| Industry Type (select one before continuing, do not leave   | SOCMI w/o Ethylene                    |  |  |  |  |  |
| blank)                                                      |                                       |  |  |  |  |  |
|                                                             |                                       |  |  |  |  |  |
| III. Control Efficiencies                                   |                                       |  |  |  |  |  |
| Instrument Monitoring LDAR Program (select one, do not      | 28VHP                                 |  |  |  |  |  |
| leave blank, select None if not applicable)                 |                                       |  |  |  |  |  |
| Connector Monitoring LDAR Program (select one, do not       | 28CNTQ                                |  |  |  |  |  |
| leave blank, select None if not applicable)                 |                                       |  |  |  |  |  |
| Physical Inspection LDAR Program (select one, do not leave  | None                                  |  |  |  |  |  |
| blank, select None if not applicable)                       |                                       |  |  |  |  |  |
| Are your facilities subject to fugitive emission monitoring | No                                    |  |  |  |  |  |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you       |                                       |  |  |  |  |  |
| applying reduction credit for process drains?               |                                       |  |  |  |  |  |
| If yes, please select the appropriate control efficiency:   |                                       |  |  |  |  |  |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Natural Gas       |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |  |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|--|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>Ib/hr | Controlled<br>tpy |  |
| Valves                                             | Gas/Vapor          | 42    | 0.0089                         | 0.97                                                   | 0                                                        | 0                                                    | 0.01                | 0.05              |  |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |  |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |  |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors                                 | Gas/Vapor          | 300   | 0.0029                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.03                | 0.11              |  |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |  |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |
| Relief Valves                                      | Gas/Vapor          | 24    | 0.2293                         | 0.97                                                   | 0                                                        | 0                                                    | 0.17                | 0.72              |  |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Relief Valves (controlled)                         | Âll                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |  |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |  |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |  |
| Total Count, Total Emission Rates (Ibs/hr and tpy) |                    | 366   |                                |                                                        |                                                          |                                                      | 0.20                | 0.89              |  |

## Table E-13 Equipment Leak Fugitives (EPN: FUG)

Controlled

lb/hr

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Controlled

tpy

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

## Source/Area Name: Natural Gas

Total Component Count, Total Emission Rate (lbs/hr and

tpy)

| V. Emission Rates - Unique Components                                              |         |       |                                |                                   |
|------------------------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|
| Are you proposing any components not included in Section IV above?                 | No      |       |                                |                                   |
| If yes, provide justification for the factors used for these<br>unique components. |         |       |                                |                                   |
| Component                                                                          | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |
|                                                                                    |         |       |                                |                                   |

0
| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Natural Gas       |

| VI. Speciation (non-GHG)                                                                             |                       |                |      |            |                        |                               |                   |           |            |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|-----------|------------|
| CAS #                                                                                                | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr     | tpy        |
| 74-84-0                                                                                              | ethane                |                | No   | No         | No                     | Yes                           | 2.00%             | 0         | 0          |
| 74-98-6                                                                                              | propane               |                | Yes  | No         | No                     | No                            | 1.00%             | 0.0020241 | 0.00886556 |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
| Total Weight Percent, Hourly Emissions and Annual<br>Emissions (excluding Inert / Not a Contaminant) |                       |                |      |            |                        |                               | 3.00%             | 0.00      | 0.01       |

| Fugitive | Calculation | Workbook. | Summary  |
|----------|-------------|-----------|----------|
| i ugiuve | Galculation | WORKDOOK. | Guinnary |

| VII. Speciation (GHG) |                           |                                   |                   |                             |                                              |
|-----------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                 | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 74-82-8               | Methane                   | 25                                | 100.00%           | 0.8865558                   | 22.163895                                    |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                       | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| equivalent Basis)     |                           |                                   |                   | 0.8865558                   | 22.163895                                    |

| VIII Emission Summers for Merkeheet (such des heart (      |       |
|------------------------------------------------------------|-------|
| Not a Contaminant)                                         |       |
| Total Emissions (ovaludas CHC / Inort / Not a Contaminant) |       |
| (lbs/hr)                                                   | 0.00  |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |       |
| (tpy)                                                      | 0.01  |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.00  |
| Total Annual VOC Emissions (tpy)                           | 0.01  |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.00  |
| Total Annual Inorganic Emissions (tpy)                     | 0.00  |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00  |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00  |
| Total GHG TPY (mass basis)                                 | 0.89  |
| Total GHG TPY (CO <sub>2</sub> e)                          | 22.16 |

| I. General Information                                           |                                       |
|------------------------------------------------------------------|---------------------------------------|
| Company name                                                     | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                                    | To be assigned                        |
| Source name                                                      | CO2                                   |
| Emission Point Number (EPN)                                      | FUG                                   |
| Preparation date                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ            | Yes                                   |
| application workbook and any necessary attachments.              |                                       |
| Except for inputting the requested data and adjusting row        |                                       |
| height and column width, I have not changed the TCEQ             |                                       |
| application workbook in any way, including but not               |                                       |
| limited to changing formulas, formatting, content, or            |                                       |
| protections.                                                     |                                       |
|                                                                  |                                       |
| II Industry Pollutant Type and Emission Factors                  |                                       |
| Industry Type (select one before continuing do not leave         | SOCMI w/o Ethylene                    |
| hlank)                                                           |                                       |
| biank)                                                           |                                       |
| III. Control Efficiencies                                        |                                       |
| Instrument Monitoring LDAR Program (select one, do not           | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Connector Monitoring LDAR Program (select one, do not            | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Physical Inspection LDAR Program (select one, do not leave       | None                                  |
| blank, select None if not applicable)                            |                                       |
| Are your facilities subject to fugitive emission monitoring      | No                                    |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |                                       |
| applying reduction credit for process drains?                    |                                       |
| If yes, please select the appropriate control efficiency:        |                                       |
| If yes, provide justification for the selected reduction credit. |                                       |
| Note: Facilities subject to fugitive emission monitoring under   |                                       |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |                                       |
| monitor process drains on an annual basis. A 75% reduction       |                                       |
| credit may be applied for annual monitoring of process drains    |                                       |
| at a leak threshold of 500 ppmv provided the drain is designed   |                                       |
| in such a manner that repairs to leaking drains can be           |                                       |
| achieved. For example, flushing a water seal on a leaking        |                                       |
| process drain would constitute repair, so a 75% reduction        |                                       |
| credit may be applied. Similarly, a 95% reduction credit can be  |                                       |
| applied for guarterly monitoring of drains if repairs to the     |                                       |
| leaking drains can be completed.                                 |                                       |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: CO2               |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          | 20    | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.18                | 0.78              |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          | 40    | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.12                | 0.51              |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liguid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves (controlled)                         | Âll                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 60    |                                | -                                                      | -                                                        |                                                      | 0.29                | 1.29              |

# V. Emission Rates - Unique Components Are you proposing any components not included in Section IV above? If yes, provide justification for the factors used for these unique components. Component Service

| Component                                                   | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
|-------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|-------------------|
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
| Total Component Count, Total Emission Rate (Ibs/hr and tpy) |         | 0     |                                |                                   | 0.00                | 0.00              |

| VI. Speciation (non-GHG)                                                                             |                       |                |      |            |                        |                               |                   |       |      |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|-------|------|
| CAS #                                                                                                | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr | tpy  |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0     | 0    |
| Total Weight Percent, Hourly Emissions and Annual<br>Emissions (excluding Inert / Not a Contaminant) |                       |                |      |            |                        |                               | 0.00%             | 0.00  | 0.00 |

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 100.00%           | 1.28772                     | 1.28772                                      |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 1.28772                     | 1.28772                                      |

| VIII - Emission Summary for Worksheet (excludes Inert /    |      |
|------------------------------------------------------------|------|
| Not a Contaminant)                                         |      |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |
| (lbs/hr)                                                   | 0.00 |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |
| (tpy)                                                      | 0.00 |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.00 |
| Total Annual VOC Emissions (tpy)                           | 0.00 |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.00 |
| Total Annual Inorganic Emissions (tpy)                     | 0.00 |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00 |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00 |
| Total GHG TPY (mass basis)                                 | 1.29 |
| Total GHG TPY (CO <sub>2</sub> e)                          | 1.29 |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Ammonia (Pure)

| Source/Area Name: Ammonia (Pure)                                 |                                       |
|------------------------------------------------------------------|---------------------------------------|
| I. General Information                                           |                                       |
| Company name                                                     | Ingleside Clean Ammonia Partners, LLC |
|                                                                  |                                       |
| Permit number                                                    | To be assigned                        |
| Source name                                                      | Ammonia (Pure)                        |
| Emission Point Number (EPN)                                      | FUG                                   |
| Preparation date                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ            | Yes                                   |
| application workbook and any necessary attachments.              |                                       |
| Except for inputting the requested data and adjusting row        |                                       |
| height and column width, I have not changed the TCEQ             |                                       |
| application workbook in any way, including but not               |                                       |
| limited to changing formulas, formatting, content, or            |                                       |
| protections.                                                     |                                       |
|                                                                  |                                       |
| II. Industry, Pollutant Type and Emission Factors                |                                       |
| Industry Type (select one before continuing, do not leave        | SOCMI w/o Ethylene                    |
| blank)                                                           |                                       |
|                                                                  |                                       |
| III. Control Efficiencies                                        |                                       |
| Instrument Monitoring LDAR Program (select one, do not           | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Connector Monitoring LDAR Program (select one, do not            | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Physical Inspection LDAR Program (select one, do not leave       | 28AVO                                 |
| blank, select None if not applicable)                            |                                       |
| Are your facilities subject to fugitive emission monitoring      | No                                    |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |                                       |
| applying reduction credit for process drains?                    |                                       |
| If yes, please select the appropriate control efficiency:        |                                       |
| If yes, provide justification for the selected reduction credit. |                                       |
| Note: Facilities subject to fugitive emission monitoring under   |                                       |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |                                       |
| monitor process drains on an annual basis. A 75% reduction       |                                       |
| credit may be applied for annual monitoring of process drains    |                                       |
| at a leak threshold of 500 ppmv provided the drain is designed   |                                       |
| in such a manner that repairs to leaking drains can be           |                                       |
| achieved. For example, flushing a water seal on a leaking        |                                       |
| process drain would constitute repair, so a 75% reduction        |                                       |
| credit may be applied. Similarly, a 95% reduction credit can be  |                                       |
| applied for quarterly monitoring of drains if repairs to the     |                                       |
| leaking drains can be completed.                                 |                                       |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Ammonia (Pure)    |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>Ib/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Light Liquid       | 7804  | 0.0035                         | 0                                                      | 0                                                        | 0.97                                                 | 0.82                | 3.59              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       | 6     | 0.0386                         | 0                                                      | 0                                                        | 0.93                                                 | 0.02                | 0.07              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Light Liquid       | 8546  | 0.0005                         | 0                                                      | 0                                                        | 0.97                                                 | 0.13                | 0.56              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0                                                      | 0                                                        | 0.95                                                 | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves (controlled)                         | ÂII                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 16356 |                                |                                                        | -                                                        |                                                      | 0.96                | 4.22              |

#### Fugitive Calculation Workbook: Summary

#### Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Ammonia (Pure)

Table E-13

tpy)

|       | • |  | • |       |
|-------|---|--|---|-------|
| -     |   |  |   |       |
| 1.7 5 |   |  | C | <br>- |

Total Component Count, Total Emission Rate (lbs/hr and

| V. Emission Rates - Unique Components                                           |         |       |                                |                                   |
|---------------------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|
| Are you proposing any components not included in Section IV above?              | No      |       |                                |                                   |
| If yes, provide justification for the factors used for these unique components. |         |       |                                |                                   |
| Component                                                                       | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |
|                                                                                 |         |       |                                |                                   |

Controlled

lb/hr

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Controlled

tpy

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Ammonia (Pure)    |

Total Weight Percent, Hourly Emissions and Annual

Emissions (excluding Inert / Not a Contaminant)

VI. Speciation (non-GHG)

| CAS #     | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr    | tpy        |
|-----------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|----------|------------|
| 7664-41-7 | ammonia               |                | No   | Yes        | No                     | No                            | 100.00%           | 0.963822 | 4.22154036 |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |
|           | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0        | 0          |

100.00%

0

0

0

0

0.96

0

0

0

0

4.22

No

No CAS Number Entered

No CAS Number Entered

No CAS Number Entered

No CAS Number Entered

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Ammonia (Pure)

| VII. Speciation (GHG)                              |                           |                                   |                   |                             |                                              |
|----------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                              | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
| Total CHC Emissions (Mass Basis and Carbon disvide | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
| equivalent Basis)                                  |                           |                                   |                   | 0                           | 0                                            |

## Table E-13 Equipment Leak Fugitives (EPN: FUG)

### Source/Area Name: Ammonia (Pure)

| VIII - Emission Summary for Worksheet (excludes Inert /<br>Not a Contaminant) |      |
|-------------------------------------------------------------------------------|------|
| Total Emissions (excludes GHG / Inert / Not a Contaminant)                    |      |
| (lbs/hr)                                                                      | 0.96 |
| Total Emissions (excludes GHG / Inert / Not a Contaminant)                    |      |
| (tpy)                                                                         | 4.22 |
| Total Hourly VOC Emissions (lbs/hr)                                           | 0.00 |
| Total Annual VOC Emissions (tpy)                                              | 0.00 |
| Total Hourly Inorganic Emissions (lbs/hr)                                     | 0.96 |
| Total Annual Inorganic Emissions (tpy)                                        | 4.22 |
| Total Hourly Exempt Solvent Emissions (lbs/hr)                                | 0.00 |
| Total Annual Exempt Solvent Emissions (tpy)                                   | 0.00 |
| Total GHG TPY (mass basis)                                                    | 0.00 |
| Total GHG TPY (CO <sub>2</sub> e)                                             | 0.00 |

blank)

| I. General Information                                    |                                       |
|-----------------------------------------------------------|---------------------------------------|
| Company name                                              | Ingleside Clean Ammonia Partners, LLC |
|                                                           |                                       |
| Permit number                                             | To be assigned                        |
| Source name                                               | Feed Inlet                            |
| Emission Point Number (EPN)                               | FUG                                   |
| Preparation date                                          | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ     | Yes                                   |
| application workbook and any necessary attachments.       |                                       |
| Except for inputting the requested data and adjusting row |                                       |
| height and column width, I have not changed the TCEQ      |                                       |
| application workbook in any way, including but not        |                                       |
| limited to changing formulas, formatting, content, or     |                                       |
| protections.                                              |                                       |
|                                                           | <u> </u>                              |
| II. Industry, Pollutant Type and Emission Factors         |                                       |
| Industry Type (select one before continuing, do not leave | SOCMI w/o Ethylene                    |
|                                                           |                                       |

| III. Control Efficiencies                                        |        |
|------------------------------------------------------------------|--------|
| Instrument Monitoring LDAR Program (select one, do not           | 28VHP  |
| leave blank, select None if not applicable)                      |        |
| Connector Monitoring LDAR Program (select one, do not            | 28CNTQ |
| leave blank, select None if not applicable)                      |        |
| Physical Inspection LDAR Program (select one, do not leave       | None   |
| blank, select None if not applicable)                            |        |
| Are your facilities subject to fugitive emission monitoring      | No     |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |        |
| applying reduction credit for process drains?                    |        |
| If yes, please select the appropriate control efficiency:        |        |
| If yes, provide justification for the selected reduction credit. |        |
| Note: Facilities subject to fugitive emission monitoring under   |        |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |        |
| monitor process drains on an annual basis. A 75% reduction       |        |
| credit may be applied for annual monitoring of process drains    |        |
| at a leak threshold of 500 ppmv provided the drain is designed   |        |
| in such a manner that repairs to leaking drains can be           |        |
| achieved. For example, flushing a water seal on a leaking        |        |
| process drain would constitute repair, so a 75% reduction        |        |
| credit may be applied. Similarly, a 95% reduction credit can be  |        |
| applied for quarterly monitoring of drains if repairs to the     |        |
| leaking drains can be completed.                                 |        |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Feed Inlet        |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          | 916   | 0.0089                         | 0.97                                                   | 0                                                        | 0                                                    | 0.24                | 1.07              |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          | 2360  | 0.0029                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.21                | 0.90              |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          | 2     | 0.5027                         | 0.85                                                   | 0                                                        | 0                                                    | 0.15                | 0.66              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves (controlled)                         | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 3278  |                                |                                                        |                                                          |                                                      | 0.60                | 2.63              |

### Table E-13 Equipment Leak Fugitives (EPN: FUG)

# Source/Area Name: Feed Inlet V. Emission Rates - Unique Components Are you proposing any components not included in Section IV

| Are you proposing any components not included in Section IV above?              | No      | Ï     |                                |                                   |                     |                   |
|---------------------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|-------------------|
| If yes, provide justification for the factors used for these unique components. |         |       |                                |                                   |                     |                   |
| Component                                                                       | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>Ib/hr | Controlled<br>tpy |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
| Total Component Count, Total Emission Rate (lbs/hr and tpy)                     |         | 0     |                                |                                   | 0.00                | 0.00              |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Feed Inlet        |

| VI. Speciation (non-GHG)                                                                             |                       |                |         |            |                        |                               |                   |            |            |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------|---------|------------|------------------------|-------------------------------|-------------------|------------|------------|
| CAS #                                                                                                | Chemical Constituent  | Other Species? | VOC?    | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr      | tpy        |
| 74-98-6                                                                                              | propane               |                | Yes     | No         | No                     | No                            | 3.93%             | 0.02358741 | 0.10331286 |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO No   | No         | No.                    | NO No                         |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | INO NIE | INO<br>Na  | INO<br>Na              | INO                           |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO      | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO      | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO      | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO      | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO      | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO      | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO      | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No      | No         | No                     | No                            |                   | 0          | 0          |
| Total Weight Percent, Hourly Emissions and Annual<br>Emissions (excluding Inert / Not a Contaminant) |                       |                |         |            |                        |                               | 3.93%             | 0.02       | 0.10       |

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 74-82-8                                                                  | Methane                   | 25                                | 94.59%            | 2.488717797                 | 62.21794491                                  |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 1.48%             | 0.039044101                 | 0.039044101                                  |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 2.527761897                 | 62.25698901                                  |

| VIII - Emission Summary for Worksheet (excludes Inert /    |       |
|------------------------------------------------------------|-------|
| Not a Contaminant)                                         |       |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |       |
| (lbs/hr)                                                   | 0.02  |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |       |
| (tpy)                                                      | 0.10  |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.02  |
| Total Annual VOC Emissions (tpy)                           | 0.10  |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.00  |
| Total Annual Inorganic Emissions (tpy)                     | 0.00  |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00  |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00  |
| Total GHG TPY (mass basis)                                 | 2.53  |
| Total GHG TPY (CO <sub>2</sub> e)                          | 62.26 |

achieved. For example, flushing a water seal on a leaking process drain would constitute repair, so a 75% reduction credit may be applied. Similarly, a 95% reduction credit can be applied for quarterly monitoring of drains if repairs to the

leaking drains can be completed.

| I. General Information                                           |                                       |
|------------------------------------------------------------------|---------------------------------------|
| Company name                                                     | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                                    | To be assigned                        |
| Source name                                                      | Reforming                             |
| Emission Point Number (EPN)                                      | FUG                                   |
| Preparation date                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ            | Yes                                   |
| application workbook and any necessary attachments.              |                                       |
| Except for inputting the requested data and adjusting row        |                                       |
| height and column width, I have not changed the TCEQ             |                                       |
| application workbook in any way, including but not               |                                       |
| limited to changing formulas, formatting, content, or            |                                       |
| protections.                                                     |                                       |
| U. In destates, Dellistent Trans and Desired as Destates         |                                       |
| II. Industry, Pollutant Type and Emission Factors                | 000ML w/s Ethodows                    |
| Industry Type (select one before continuing, do not leave        | SOCIVII W/O Ethylene                  |
| Diarik)                                                          |                                       |
| III. Control Efficiencies                                        |                                       |
| Instrument Monitoring LDAR Program (select one, do not           | 28VHP                                 |
| leave blank, select None if not applicable)                      |                                       |
| Connector Monitoring LDAR Program (select one, do not            | 28CNTQ                                |
| leave blank, select None if not applicable)                      |                                       |
| Physical Inspection LDAR Program (select one, do not leave       | 28AVO                                 |
| blank, select None if not applicable)                            |                                       |
| Are your facilities subject to fugitive emission monitoring      | No                                    |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |                                       |
| applying reduction credit for process drains?                    |                                       |
| If yes, please select the appropriate control efficiency:        |                                       |
| If yes, provide justification for the selected reduction credit. |                                       |
| Note: Facilities subject to fugitive emission monitoring under   |                                       |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |                                       |
| monitor process drains on an annual basis. A 75% reduction       |                                       |
| credit may be applied for annual monitoring of process drains    |                                       |
| at a leak threshold of 500 ppmv provided the drain is designed   |                                       |
| in such a manner that repairs to leaking drains can be           |                                       |

| Table E-13                          |  |
|-------------------------------------|--|
| Equipment Leak Fugitives (EPN: FUG) |  |
| Source/Area Name: Reforming         |  |

\_

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          | 2252  | 0.0089                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.60                | 2.63              |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          | 6360  | 0.0029                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 0.55                | 2.42              |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0.85                                                   | 0                                                        | 0.95                                                 | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves (controlled)                         | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Total Count, Total Emission Rates (Ibs/hr and tpy) |                    | 8612  |                                |                                                        |                                                          |                                                      | 1.15                | 5.06              |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG)

tpy)

# Source/Area Name: Reforming

| Source/Area Marie: Nerorining                                                      |         |       |                                |                                   |                     |
|------------------------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|
| V. Emission Rates - Unique Components                                              |         | 1     |                                |                                   |                     |
| Are you proposing any components not included in Section IV above?                 | No      |       |                                |                                   |                     |
| If yes, provide justification for the factors used for these<br>unique components. |         |       |                                |                                   |                     |
| Component                                                                          | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>Ib/hr |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
| Total Component Count, Total Emission Rate (lbs/hr and                             |         | 0     |                                |                                   | 0.00                |

Controlled tpy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Reforming         |

| VI. Speciation (non-GHG)                                                                             |                       |                |      |            |                        |                               |                   |            |            |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|------------|------------|
| CAS #                                                                                                | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr      | tpy        |
| 630-08-0                                                                                             | carbon monoxide       |                | No   | Yes        | No                     | No                            | 1.21%             | 0.01400006 | 0.06132028 |
| 74-98-6                                                                                              | propane               |                | Yes  | No         | No                     | No                            | 2.65%             | 0.03064922 | 0.13424356 |
| 7783-06-4                                                                                            | hydrogen sulfide      |                | No   | Yes        | No                     | No                            | 0.04%             | 0.00044024 | 0.00192824 |
| 7664-41-7                                                                                            | ammonia               |                | No   | Yes        | No                     | No                            | 0.02%             | 0.00019501 | 0.00085414 |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
| Total Weight Percent, Hourly Emissions and Annual<br>Emissions (excluding Inert / Not a Contaminant) |                       |                |      |            |                        |                               | 3.92%             | 0.05       | 0.20       |

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 74-82-8                                                                  | Methane                   | 25                                | 94.06%            | 4.756566786                 | 118.9141696                                  |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 2.02%             | 0.102252524                 | 0.102252524                                  |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   | -                           |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number                     |                   | 0                           |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   | -                           |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          |                           | No CAS Number                     |                   |                             |                                              |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 4.85881931                  | 119.0164222                                  |

| VIII - Emission Summary for Worksheet (excludes Inert /    |        |
|------------------------------------------------------------|--------|
| Not a Contaminant)                                         |        |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |        |
| (lbs/hr)                                                   | 0.05   |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |        |
| (tpy)                                                      | 0.20   |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.03   |
| Total Annual VOC Emissions (tpy)                           | 0.13   |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.01   |
| Total Annual Inorganic Emissions (tpy)                     | 0.06   |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00   |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00   |
| Total GHG TPY (mass basis)                                 | 4.86   |
| Total GHG TPY (CO <sub>2</sub> e)                          | 119.02 |

| I. General Information                                                                                                                                                                                                                                                                                                                                           |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Company name                                                                                                                                                                                                                                                                                                                                                     | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                                                                                                                                                                                                                                                                                                                                    | To be assigned                        |
| Source name                                                                                                                                                                                                                                                                                                                                                      | Shift                                 |
| Emission Point Number (EPN)                                                                                                                                                                                                                                                                                                                                      | FUG                                   |
| Preparation date                                                                                                                                                                                                                                                                                                                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ<br>application workbook and any necessary attachments.<br>Except for inputting the requested data and adjusting row<br>height and column width, I have not changed the TCEQ<br>application workbook in any way, including but not<br>limited to changing formulas, formatting, content, or<br>protections. | Yes                                   |
| II. Industry, Pollutant Type and Emission Factors                                                                                                                                                                                                                                                                                                                |                                       |
| Industry Type (select one before continuing, do not leave blank)                                                                                                                                                                                                                                                                                                 | SOCMI w/o Ethylene                    |
|                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| III. Control Efficiencies                                                                                                                                                                                                                                                                                                                                        |                                       |
| Instrument Monitoring LDAR Program (select one, do not leave blank, select None if not applicable)                                                                                                                                                                                                                                                               | 28VHP                                 |
| O                                                                                                                                                                                                                                                                                                                                                                | DOCNITO                               |

| Instrument Monitoring LDAR Program (         | select one, do not       | 28VHP  |
|----------------------------------------------|--------------------------|--------|
| leave blank, select None if not applicab     | le)                      |        |
| Connector Monitoring LDAR Program (          | select one, do not       | 28CNTQ |
| leave blank, select None if not applicab     | le)                      |        |
| Physical Inspection LDAR Program (se         | lect one, do not leave   | None   |
| blank, select None if not applicable)        |                          |        |
| Are your facilities subject to fugitive em   | ission monitoring        | No     |
| under 30 TAC §§115.324(1)(C) and 35          | 4(1)(A) or are you       |        |
| applying reduction credit for process dr     | ains?                    |        |
| If yes, please select the appropriate con    | ntrol efficiency:        |        |
| If yes, provide justification for the select | ed reduction credit.     |        |
| Note: Facilities subject to fugitive emiss   | ion monitoring under     |        |
| 30 TAC §§115.324(1)(C) and 354(1)(A          | are required to          |        |
| monitor process drains on an annual ba       | asis. A 75% reduction    |        |
| credit may be applied for annual monitor     | oring of process drains  |        |
| at a leak threshold of 500 ppmv provide      | ed the drain is designed |        |
| in such a manner that repairs to leaking     | drains can be            |        |
| achieved. For example, flushing a wate       | r seal on a leaking      |        |
| process drain would constitute repair, s     | o a 75% reduction        |        |
| credit may be applied. Similarly, a 95%      | reduction credit can be  |        |
| applied for quarterly monitoring of drain    | s if repairs to the      |        |
| leaking drains can be completed.             |                          |        |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Shift             |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          | 2152  | 0.0089                         | 0.97                                                   | 0                                                        | 0                                                    | 0.57                | 2.52              |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          | 6400  | 0.0029                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.56                | 2.44              |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liguid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves (controlled)                         | Âll                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 8552  |                                |                                                        |                                                          |                                                      | 1.13                | 4.96              |

0

Total Component Count, Total Emission Rate (lbs/hr and

tpy)

| V. Emission Rates - Unique Components                                              |         | 1     |                                |                                   |                     |
|------------------------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|
| Are you proposing any components not included in Section IV above?                 | No      |       |                                |                                   |                     |
| If yes, provide justification for the factors used for these<br>unique components. |         |       |                                |                                   |                     |
| Component                                                                          | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>lb/hr |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |
|                                                                                    |         |       |                                |                                   | 0.00                |

Controlled

tpy

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

| VI. Speciation (non-GHG)                          |                       |                |            |            |                        |                               |                   |            |            |
|---------------------------------------------------|-----------------------|----------------|------------|------------|------------------------|-------------------------------|-------------------|------------|------------|
| CAS #                                             | Chemical Constituent  | Other Species? | VOC?       | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr      | tpy        |
| 630-08-0                                          | carbon monoxide       |                | No         | Yes        | No                     | No                            | 54.45%            | 0.61603561 | 2.69823597 |
| 7783-06-4                                         | hydrogen sulfide      |                | No         | Yes        | No                     | No                            | 0.03%             | 0.00030619 | 0.00134111 |
| 7664-41-7                                         | ammonia               |                | No         | Yes        | No                     | No                            | 0.05%             | 0.00058518 | 0.00256308 |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | Ű          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | No                            |                   | U          | U          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | NO                            |                   | U          | U          |
|                                                   | No CAS Number Entered |                | INO<br>N - | NO         | NO                     | INO NI-                       |                   | U          | U          |
|                                                   | No CAS Number Entered |                | No         | No         | No                     | NO                            |                   | U          | U          |
|                                                   | No CAS Number Entered |                | INO<br>No  | NO         | NO                     | NO No                         |                   | 0          | 0          |
| Total Weight Bereant, Hourly Emissions and Appuel |                       |                |            | INO        | INO                    | NO                            | 54 53%            | 0.62       | 2 70       |
| Emissions (excluding Inert / Not a Contaminant)   |                       |                |            |            |                        |                               | 04.00%            | 0.02       | 2.70       |

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 74-82-8                                                                  | Methane                   | 25                                | 1.24%             | 0.061523572                 | 1.538089289                                  |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 44.23%            | 2.191798192                 | 2.191798192                                  |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 2.253321763                 | 3.729887481                                  |

| VIII - Emission Summary for Worksheet (excludes Inert /    |      |
|------------------------------------------------------------|------|
| Not a Contaminant)                                         |      |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |
| (lbs/hr)                                                   | 0.62 |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |
| (tpy)                                                      | 2.70 |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.00 |
| Total Annual VOC Emissions (tpy)                           | 0.00 |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.62 |
| Total Annual Inorganic Emissions (tpy)                     | 2.70 |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00 |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00 |
| Total GHG TPY (mass basis)                                 | 2.25 |
| Total GHG TPY (CO <sub>2</sub> e)                          | 3.73 |

If yes, provide justification for the selected reduction credit. Note: Facilities subject to fugitive emission monitoring under 30 TAC §§115.324(1)(C) and 354(1)(A) are required to monitor process drains on an annual basis. A 75% reduction credit may be applied for annual monitoring of process drains at a leak threshold of 500 ppmv provided the drain is designed in such a manner that repairs to leaking drains can be achieved. For example, flushing a water seal on a leaking process drain would constitute repair, so a 75% reduction credit may be applied. Similarly, a 95% reduction credit can be applied for quarterly monitoring of drains if repairs to the

leaking drains can be completed.

| I. General Information                                      |                                       |
|-------------------------------------------------------------|---------------------------------------|
| Company name                                                | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                               | To be assigned                        |
| Source name                                                 | OASE                                  |
| Emission Point Number (EPN)                                 | FUG                                   |
| Preparation date                                            | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ       | Yes                                   |
| application workbook and any necessary attachments.         |                                       |
| Except for inputting the requested data and adjusting row   |                                       |
| application workbook in any way including but not           |                                       |
| application workbook in any way, including but not          |                                       |
| initied to changing formulas, formatting, content, or       |                                       |
| protections.                                                |                                       |
|                                                             |                                       |
| II. Industry, Pollutant Type and Emission Factors           | 1                                     |
| Industry Type (select one before continuing, do not leave   | SOCMI w/o Ethylene                    |
| blank)                                                      |                                       |
|                                                             |                                       |
| III. Control Efficiencies                                   |                                       |
| Instrument Monitoring LDAR Program (select one, do not      | 28VHP                                 |
| leave blank, select None if not applicable)                 |                                       |
| Connector Monitoring LDAR Program (select one, do not       | 28CNTQ                                |
| leave blank, select None if not applicable)                 |                                       |
| Physical Inspection LDAR Program (select one, do not leave  | 28AVO                                 |
| blank, select None if not applicable)                       |                                       |
| Are your facilities subject to fugitive emission monitoring | No                                    |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you       |                                       |
| applying reduction credit for process drains?               |                                       |
| If yes, please select the appropriate control efficiency:   |                                       |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: OASE              |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |  |  |  |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|--|--|--|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |  |  |  |
| Valves                                             | Gas/Vapor          | 4256  | 0.0089                         | 0.97                                                   | 0                                                        | 0.97                                                 | 1.14                | 4.98              |  |  |  |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |  |  |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |  |  |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |  |  |  |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |  |  |  |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |  |  |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |  |  |  |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |  |  |  |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |  |  |  |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors                                 | Gas/Vapor          | 15000 | 0.0029                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 1.31                | 5.72              |  |  |  |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |  |  |
| Compressors                                        | Gas/Vapor          | 4     | 0.5027                         | 0.85                                                   | 0                                                        | 0.95                                                 | 0.10                | 0.44              |  |  |  |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |  |  |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |  |  |  |
| Relief Valves (controlled)                         | Áll                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |  |  |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |  |  |  |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |  |  |  |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |  |  |  |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |  |  |  |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |  |  |  |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |  |  |  |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 19260 |                                |                                                        |                                                          |                                                      | 2.54                | 11.13             |  |  |  |

## V. Emission Rates - Unique Components Are you proposing any components not included in Section IV No above? If yes, provide justification for the factors used for these unique components.

| Component                                                   | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
|-------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|-------------------|
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
| Total Component Count, Total Emission Rate (lbs/hr and tpy) |         | 0     |                                |                                   | 0.00                | 0.00              |
| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: OASE              |

| VI. Speciation (non-GHG)                                                                             |                       |                |      |            |                        |                               |                   |            |            |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|------------|------------|
| CAS #                                                                                                | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr      | tpy        |
| 630-08-0                                                                                             | carbon monoxide       |                | No   | Yes        | No                     | No                            | 19.09%            | 0.48534418 | 2.12580752 |
| 7783-06-4                                                                                            | hydrogen sulfide      |                | No   | Yes        | No                     | No                            | 0.24%             | 0.00622609 | 0.02727028 |
| 7664-41-7                                                                                            | ammonia               |                | No   | Yes        | No                     | No                            | 0.04%             | 0.00101987 | 0.00446704 |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | NO         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO   | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO   | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO   | NO         | NO No                  | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | NO   | NO         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | NO                     | NO                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
| Total Weight Percent, Hourly Emissions and Annual<br>Emissions (excluding Inert / Not a Contaminant) |                       |                |      |            |                        |                               | 19.38%            | 0.49       | 2.16       |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: OASE

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 74-82-8                                                                  | Methane                   | 25                                | 1.69%             | 0.187956759                 | 4.698918983                                  |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 78.93%            | 8.787985361                 | 8.787985361                                  |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 8.97594212                  | 13.48690434                                  |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: OASE

| VIII - Emission Summary for Worksheet (excludes Inert /    |       |
|------------------------------------------------------------|-------|
| Not a Contaminant)                                         |       |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |       |
| (lbs/hr)                                                   | 0.49  |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |       |
| (tpy)                                                      | 2.16  |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.00  |
| Total Annual VOC Emissions (tpy)                           | 0.00  |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.49  |
| Total Annual Inorganic Emissions (tpy)                     | 2.16  |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00  |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00  |
| Total GHG TPY (mass basis)                                 | 8.98  |
| Total GHG TPY (CO <sub>2</sub> e)                          | 13.49 |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: NWU Compression

| I. General Information                                           |                                       |
|------------------------------------------------------------------|---------------------------------------|
| Company name                                                     | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                                    | To be assigned                        |
| Source name                                                      | NWU Compression                       |
| Emission Point Number (EPN)                                      | FUG                                   |
| Preparation date                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ            | Yes                                   |
| application workbook and any necessary attachments.              |                                       |
| Except for inputting the requested data and adjusting row        |                                       |
| height and column width, I have not changed the TCEQ             |                                       |
| application workbook in any way, including but not               |                                       |
| limited to changing formulas, formatting, content, or            |                                       |
| protections.                                                     |                                       |
| U. In duration, D. Hadavid Towns and Englandary Products         |                                       |
| II. Industry, Pollutant Type and Emission Factors                | 200Minute Ethniane                    |
| Industry Type (select one before continuing, do not leave        | SOCMI W/O Ethylene                    |
| Diank)                                                           |                                       |
| III. Control Efficiencies                                        |                                       |
| Instrument Monitoring I DAR Program (select one do not           | 28VHP                                 |
| leave blank, select None if not applicable)                      |                                       |
| Connector Monitoring LDAR Program (select one, do not            | 28CNTQ                                |
| leave blank, select None if not applicable)                      |                                       |
| Physical Inspection LDAR Program (select one, do not leave       | 28AVO                                 |
| blank, select None if not applicable)                            |                                       |
| Are your facilities subject to fugitive emission monitoring      | No                                    |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |                                       |
| applying reduction credit for process drains?                    |                                       |
| If yes, please select the appropriate control efficiency:        |                                       |
| If yes, provide justification for the selected reduction credit. |                                       |
| Note: Facilities subject to fugitive emission monitoring under   |                                       |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |                                       |
| monitor process drains on an annual basis. A 75% reduction       |                                       |
| credit may be applied for annual monitoring of process drains    |                                       |
| at a leak threshold of 500 ppmv provided the drain is designed   |                                       |
| in such a manner that repairs to leaking drains can be           |                                       |
| achieved. For example, flushing a water seal on a leaking        |                                       |
| process drain would constitute repair, so a 75% reduction        |                                       |
| credit may be applied. Similarly, a 95% reduction credit can be  |                                       |
| applied for quarterly monitoring of drains if repairs to the     |                                       |
| leaking drains can be completed                                  |                                       |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          | 5388  | 0.0089                         | 0.97                                                   | 0                                                        | 0.97                                                 | 1.44                | 6.30              |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          | 8840  | 0.0029                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 0.77                | 3.37              |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          | 4     | 0.5027                         | 0.85                                                   | 0                                                        | 0.95                                                 | 0.10                | 0.44              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves (controlled)                         | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 14232 |                                |                                                        |                                                          |                                                      | 2 31                | 10 11             |

tpy)

| Source/Area Name: NWU Compression                                                 |         |       |                                |                                   |                     |                   |
|-----------------------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|-------------------|
| V. Emission Rates - Unique Components                                             |         | 1     |                                |                                   |                     |                   |
| Are you proposing any components not included in Section IV above?                | No      |       |                                |                                   |                     |                   |
| f yes, provide justification for the factors used for these<br>unique components. |         |       |                                |                                   |                     |                   |
| Component                                                                         | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                   |         |       |                                |                                   | 0.00                | 0.00              |
| Total Component Count, Total Emission Rate (lbs/hr and                            |         | 0     |                                |                                   | 0.00                | 0.00              |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: NWU Compression   |

| VI. Speciation (non-GHG)                           |                       |                |      |            |                        |                               |                   |            |            |
|----------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|------------|------------|
| CAS #                                              | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr      | tpy        |
| 630-08-0                                           | carbon monoxide       |                | No   | Yes        | No                     | No                            | 46.68%            | 1.077585   | 4.7198223  |
| 7783-06-4                                          | hydrogen sulfide      |                | No   | Yes        | No                     | No                            | 1.51%             | 0.03492041 | 0.15295139 |
| 7664-41-7                                          | ammonia               |                | No   | Yes        | No                     | No                            | 1.44%             | 0.03312962 | 0.14510773 |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                    | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
| Tetel Mainké Densené Haunk, 5, 1, 1, 1, 1, 1, 1, 1 | No CAS Number Entered |                | No   | No         | No                     | No                            | 40.000/           | 0          | 0          |
| Emissions (excluding Inert / Not a Contaminant)    |                       |                |      |            |                        |                               | 49.63%            | 1.15       | 5.02       |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: NWU Compression

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 74-82-8                                                                  | Methane                   | 25                                | 50.35%            | 5.090535934                 | 127.2633984                                  |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 0.02%             | 0.001568732                 | 0.001568732                                  |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 5.092104666                 | 127.2649671                                  |

## Source/Area Name: NWU Compression

| VIII - Emission Summary for Worksheet (excludes Inert /<br>Not a Contaminant) |        |
|-------------------------------------------------------------------------------|--------|
| Total Emissions (excludes GHG / Inert / Not a Contaminant)                    |        |
| (Ibs/hr)                                                                      | 1.15   |
| Total Emissions (excludes GHG / Inert / Not a Contaminant)                    |        |
| (tpy)                                                                         | 5.02   |
| Total Hourly VOC Emissions (lbs/hr)                                           | 0.00   |
| Total Annual VOC Emissions (tpy)                                              | 0.00   |
| Total Hourly Inorganic Emissions (lbs/hr)                                     | 1.15   |
| Total Annual Inorganic Emissions (tpy)                                        | 5.02   |
| Total Hourly Exempt Solvent Emissions (lbs/hr)                                | 0.00   |
| Total Annual Exempt Solvent Emissions (tpy)                                   | 0.00   |
| Total GHG TPY (mass basis)                                                    | 5.09   |
| Total GHG TPY (CO <sub>2</sub> e)                                             | 127.26 |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Loop

| I. General Information                                           |                                       |
|------------------------------------------------------------------|---------------------------------------|
| Company name                                                     | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                                    | To be assigned                        |
| Source name                                                      | Loop                                  |
| Emission Point Number (EPN)                                      | FUG                                   |
| Preparation date                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ            | Yes                                   |
| application workbook and any necessary attachments.              |                                       |
| Except for inputting the requested data and adjusting row        |                                       |
| height and column width, I have not changed the TCEQ             |                                       |
| application workbook in any way, including but not               |                                       |
| limited to changing formulas, formatting, content, or            |                                       |
| protections.                                                     |                                       |
|                                                                  |                                       |
| II. Industry, Pollutant Type and Emission Factors                |                                       |
| Industry Type (select one before continuing, do not leave        | SOCMI w/o Ethylene                    |
| blank)                                                           |                                       |
|                                                                  |                                       |
| III. Control Efficiencies                                        |                                       |
| Instrument Monitoring LDAR Program (select one, do not           | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Connector Monitoring LDAR Program (select one, do not            | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Physical Inspection LDAR Program (select one, do not leave       | 28AVO                                 |
| blank, select None if not applicable)                            |                                       |
| Are your facilities subject to fugitive emission monitoring      | No                                    |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |                                       |
| applying reduction credit for process drains?                    |                                       |
| If yes, please select the appropriate control efficiency:        |                                       |
| If yes, provide justification for the selected reduction credit. |                                       |
| Note: Facilities subject to fugitive emission monitoring under   |                                       |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |                                       |
| monitor process drains on an annual basis. A 75% reduction       |                                       |
| credit may be applied for annual monitoring of process drains    |                                       |
| at a leak threshold of 500 ppmv provided the drain is designed   |                                       |
| in such a manner that repairs to leaking drains can be           |                                       |
| achieved. For example, flushing a water seal on a leaking        |                                       |
| process drain would constitute repair, so a 75% reduction        |                                       |
| credit may be applied. Similarly, a 95% reduction credit can be  |                                       |
| applied for quarterly monitoring of drains if repairs to the     |                                       |
| leaking drains can be completed.                                 |                                       |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Loop              |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>Ib/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Light Liquid       | 2008  | 0.0035                         | 0                                                      | 0                                                        | 0.97                                                 | 0.21                | 0.92              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Light Liquid       | 5560  | 0.0005                         | 0                                                      | 0                                                        | 0.97                                                 | 0.08                | 0.37              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0                                                      | 0                                                        | 0.95                                                 | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves (controlled)                         | ÂII                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 7568  |                                |                                                        | -                                                        |                                                      | 0.29                | 1.29              |

Controlled

lb/hr

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Controlled

tpy

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Total Component Count, Total Emission Rate (lbs/hr and

tpy)

| No      | 1          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Service | Count      | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | No Service | No Service Count Count         | No       Proposed         Service       Count       Proposed         Emission       Factor         Factor       Image: Service         Image: Service       Image: Service |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Loop              |

| VI. Speciation (non-GHG)                                                                             |                       |                |      |            |                        |                               |                   |           |            |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|-----------|------------|
| CAS #                                                                                                | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr     | tpy        |
| 7664-41-7                                                                                            | ammonia               |                | No   | Yes        | No                     | No                            | 29.39%            | 0.0864661 | 0.37872153 |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
| Total Weight Percent, Hourly Emissions and Annual<br>Emissions (excluding Inert / Not a Contaminant) |                       |                |      |            |                        |                               | 29.39%            | 0.09      | 0.38       |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Loop

| VII. Speciation (GHG)                                                    |                            |                                   |                   |                                       |                                              |
|--------------------------------------------------------------------------|----------------------------|-----------------------------------|-------------------|---------------------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name  | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per           | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
|                                                                          | No. 040 Newshare Fretare d | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          | No CAS Number Entered      | NO CAS Number                     |                   | 0                                     |                                              |
|                                                                          | NO CAS Number Entered      | No CAS Number                     |                   | 0                                     | -                                            |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          | No. CAS Number Entered     | No CAS Number                     |                   | 0                                     |                                              |
|                                                                          | NO CAS Number Entered      | No CAS Number                     |                   | 0                                     | -                                            |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   | _                                     |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          | No CAS Number Entered      | No CAS Number                     |                   | 0                                     |                                              |
|                                                                          | NO CAS Number Entered      | No CAS Number                     |                   | 0                                     | -                                            |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   | , , , , , , , , , , , , , , , , , , , |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
|                                                                          |                            | No CAS Number                     |                   |                                       |                                              |
|                                                                          | No CAS Number Entered      | Entered                           |                   | 0                                     | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                            |                                   |                   | 0                                     | 0                                            |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Loop

| VIII - Emission Summary for Worksheet (excludes Inert /    |      |
|------------------------------------------------------------|------|
| Not a Contaminant)                                         |      |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |
| (lbs/hr)                                                   | 0.09 |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |
| (tpy)                                                      | 0.38 |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.00 |
| Total Annual VOC Emissions (tpy)                           | 0.00 |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.09 |
| Total Annual Inorganic Emissions (tpy)                     | 0.38 |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00 |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00 |
| Total GHG TPY (mass basis)                                 | 0.00 |
| Total GHG TPY (CO <sub>2</sub> e)                          | 0.00 |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Refrigeration

| bource/Area Name: hemgeration                                    |                                       |
|------------------------------------------------------------------|---------------------------------------|
| I. General Information                                           |                                       |
| Company name                                                     | Ingleside Clean Ammonia Partners, LLC |
|                                                                  |                                       |
| Permit number                                                    | To be assigned                        |
| Source name                                                      | Refrigeration                         |
| Emission Point Number (EPN)                                      | FUG                                   |
| Preparation date                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ            | Yes                                   |
| application workbook and any necessary attachments.              |                                       |
| Except for inputting the requested data and adjusting row        |                                       |
| height and column width, I have not changed the TCEQ             |                                       |
| application workbook in any way, including but not               |                                       |
| limited to changing formulas, formatting, content, or            |                                       |
| protections.                                                     |                                       |
|                                                                  |                                       |
| II. Industry, Pollutant Type and Emission Factors                |                                       |
| Industry Type (select one before continuing, do not leave        | SOCMI w/o Ethylene                    |
| blank)                                                           |                                       |
|                                                                  |                                       |
| III. Control Efficiencies                                        |                                       |
| Instrument Monitoring LDAR Program (select one, do not           | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Connector Monitoring LDAR Program (select one, do not            | None                                  |
| leave blank, select None if not applicable)                      |                                       |
| Physical Inspection LDAR Program (select one, do not leave       | 28AVO                                 |
| blank, select None if not applicable)                            |                                       |
| Are your facilities subject to fugitive emission monitoring      | No                                    |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |                                       |
| applying reduction credit for process drains?                    |                                       |
| If yes, please select the appropriate control efficiency:        |                                       |
| If yes, provide justification for the selected reduction credit. |                                       |
| Note: Facilities subject to fugitive emission monitoring under   |                                       |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |                                       |
| monitor process drains on an annual basis. A 75% reduction       |                                       |
| credit may be applied for annual monitoring of process drains    |                                       |
| at a leak threshold of 500 ppmy provided the drain is designed   |                                       |
| in such a manner that repairs to leaking drains can be           |                                       |
| achieved. For example, flushing a water seal on a leaking        |                                       |
| process drain would constitute repair, so a 75% reduction        |                                       |
| credit may be applied. Similarly, a 95% reduction credit can be  |                                       |
| applied for guarterly monitoring of drains if repairs to the     |                                       |
| leaking drains can be completed.                                 |                                       |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Refrigeration     |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Light Liquid       | 1220  | 0.0035                         | 0                                                      | 0                                                        | 0.97                                                 | 0.13                | 0.56              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Light Liquid       | 3360  | 0.0005                         | 0                                                      | 0                                                        | 0.97                                                 | 0.05                | 0.22              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0                                                      | 0                                                        | 0.95                                                 | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves (controlled)                         | ÂII                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Total Count, Total Emission Rates (Ibs/hr and tpy) |                    | 4580  |                                |                                                        |                                                          |                                                      | 0.18                | 0.78              |

Proposed

Proposed

#### Source/Area Name: Refrigeration

| V. Emission Rates - Unique Components                                              |         |
|------------------------------------------------------------------------------------|---------|
| Are you proposing any components not included in Section IV above?                 |         |
| If yes, provide justification for the factors used for these<br>unique components. |         |
| Component                                                                          | Service |
|                                                                                    |         |

| Component                                                   | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
|-------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|-------------------|
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
|                                                             |         |       |                                |                                   | 0.00                | 0.00              |
| Total Component Count, Total Emission Rate (lbs/hr and tpy) |         | 0     |                                |                                   | 0.00                | 0.00              |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Refrigeration     |

| ······································                                                               |                       |                |      | 1          | 1                      | 1                             | 1                 | 1         | 1          |
|------------------------------------------------------------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|-----------|------------|
| CAS #                                                                                                | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr     | tpy        |
| 7664-41-7                                                                                            | ammonia               |                | No   | Yes        | No                     | No                            | 52.96%            | 0.0945336 | 0.41405717 |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
|                                                                                                      | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0         | 0          |
| Total Weight Percent, Hourly Emissions and Annual<br>Emissions (excluding Inert / Not a Contaminant) |                       |                |      |            |                        |                               | 52.96%            | 0.09      | 0.41       |

| Fugitive | Calculation | Workbook: | Summary |
|----------|-------------|-----------|---------|

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Refrigeration     |

| VII. Speciation (GHG)                              |                           |                                   |                   |                             |                                              |
|----------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                              | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                    | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
| Total CHG Emissions (Mass Basis and Carbon dioxido | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
| equivalent Basis)                                  |                           |                                   |                   | 0                           | 0                                            |

#### Source/Area Name: Refrigeration

| VIII - Emission Summary for Worksheet (excludes Inert /<br>Not a Contaminant) |      |
|-------------------------------------------------------------------------------|------|
| Total Emissions (excludes GHG / Inert / Not a Contaminant)                    |      |
| (lbs/hr)                                                                      | 0.09 |
| Total Emissions (excludes GHG / Inert / Not a Contaminant)                    |      |
| (tpy)                                                                         | 0.41 |
| Total Hourly VOC Emissions (lbs/hr)                                           | 0.00 |
| Total Annual VOC Emissions (tpy)                                              | 0.00 |
| Total Hourly Inorganic Emissions (lbs/hr)                                     | 0.09 |
| Total Annual Inorganic Emissions (tpy)                                        | 0.41 |
| Total Hourly Exempt Solvent Emissions (lbs/hr)                                | 0.00 |
| Total Annual Exempt Solvent Emissions (tpy)                                   | 0.00 |
| Total GHG TPY (mass basis)                                                    | 0.00 |
| Total GHG TPY (CO <sub>2</sub> e)                                             | 0.00 |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Fire Heater

| I. General Information                                                                                                                                                                                                                                                                                                                                           |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Company name                                                                                                                                                                                                                                                                                                                                                     | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                                                                                                                                                                                                                                                                                                                                    | To be assigned                        |
| Source name                                                                                                                                                                                                                                                                                                                                                      | Fire Heater                           |
| Emission Point Number (EPN)                                                                                                                                                                                                                                                                                                                                      | FUG                                   |
| Preparation date                                                                                                                                                                                                                                                                                                                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ<br>application workbook and any necessary attachments.<br>Except for inputting the requested data and adjusting row<br>height and column width, I have not changed the TCEQ<br>application workbook in any way, including but not<br>limited to changing formulas, formatting, content, or<br>protections. | Yes                                   |
| II. Industry, Pollutant Type and Emission Factors                                                                                                                                                                                                                                                                                                                |                                       |
| Industry Type (select one before continuing, do not leave blank)                                                                                                                                                                                                                                                                                                 | SOCMI w/o Ethylene                    |
| III. Control Efficiencies                                                                                                                                                                                                                                                                                                                                        |                                       |
| Instrument Monitoring LDAR Program (select one, do not                                                                                                                                                                                                                                                                                                           | 28VHP                                 |
| leave blank, select None if not applicable)                                                                                                                                                                                                                                                                                                                      |                                       |
| Connector Monitoring LDAR Program (select one, do not                                                                                                                                                                                                                                                                                                            | 28CNTQ                                |
| leave blank, select None if not applicable)                                                                                                                                                                                                                                                                                                                      |                                       |
| Developed Incorporation IDAD Decensors (colocit and the methods)                                                                                                                                                                                                                                                                                                 | Nama                                  |

| III. Control Efficiencies                                        |        |
|------------------------------------------------------------------|--------|
| Instrument Monitoring LDAR Program (select one, do not           | 28VHP  |
| leave blank, select None if not applicable)                      |        |
| Connector Monitoring LDAR Program (select one, do not            | 28CNTQ |
| leave blank, select None if not applicable)                      |        |
| Physical Inspection LDAR Program (select one, do not leave       | None   |
| blank, select None if not applicable)                            |        |
| Are your facilities subject to fugitive emission monitoring      | No     |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |        |
| applying reduction credit for process drains?                    |        |
| If yes, please select the appropriate control efficiency:        |        |
| If yes, provide justification for the selected reduction credit. |        |
| Note: Facilities subject to fugitive emission monitoring under   |        |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |        |
| monitor process drains on an annual basis. A 75% reduction       |        |
| credit may be applied for annual monitoring of process drains    |        |
| at a leak threshold of 500 ppmv provided the drain is designed   |        |
| in such a manner that repairs to leaking drains can be           |        |
| achieved. For example, flushing a water seal on a leaking        |        |
| process drain would constitute repair, so a 75% reduction        |        |
| credit may be applied. Similarly, a 95% reduction credit can be  |        |
| applied for quarterly monitoring of drains if repairs to the     |        |
| leaking drains can be completed.                                 |        |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Fire Heater       |

N/ Envirois a Doto

| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Valves                                             | Gas/Vapor          | 1436  | 0.0089                         | 0.97                                                   | 0                                                        | 0                                                    | 0.38                | 1.68              |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          | 4140  | 0.0029                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.36                | 1.58              |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Relief Valves (controlled)                         | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Total Count, Total Emission Rates (Ibs/hr and tpy) |                    | 5576  |                                |                                                        |                                                          |                                                      | 0.74                | 3.26              |

tpy)

| V. Emission Rates - Unique Components                                           |         |       |                                |                                   |                     |                   |
|---------------------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|-------------------|
| Are you proposing any components not included in Section IV above?              | No      |       |                                |                                   |                     |                   |
| If yes, provide justification for the factors used for these unique components. |         |       |                                |                                   |                     |                   |
| Component                                                                       | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                                 |         | 0     |                                |                                   | 0.00                | 0.00              |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Fire Heater       |

| VI. Speciation (non-GHG)                          |                         |                |      |            |                        |                               |                   |            |            |
|---------------------------------------------------|-------------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|------------|------------|
| CAS #                                             | Chemical Constituent    | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr      | tpy        |
| 630-08-0                                          | carbon monoxide         |                | No   | Yes        | No                     | No                            | 0.33%             | 0.002481   | 0.01086679 |
| 74-98-6                                           | propane                 |                | Yes  | No         | No                     | No                            | 2.86%             | 0.02130362 | 0.09330985 |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0<br>0     |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0<br>0     |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0<br>0     |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered   |                | No   | No         | No                     | No                            |                   | 0          | 0          |
| Total Weight Bercent, Hourly Emissions and Annual | No CAS Nulliber Entered |                | NO   | INU        | INU                    | NO                            | 3 20%             | 0.02       | 0.10       |
| Emissions (excluding Inert / Not a Contaminant)   |                         |                |      |            |                        |                               | 3.2076            | 0.02       | 0.10       |

|          | <u> </u>    |            | 0       |
|----------|-------------|------------|---------|
| Fugitive | Calculation | VVORKDOOK: | Summary |

Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Fire Heater

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 74-82-8                                                                  | Methane                   | 25                                | 94.84%            | 3.088957007                 | 77.22392519                                  |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 1.96%             | 0.063799313                 | 0.063799313                                  |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 3.152756321                 | 77.2877245                                   |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Fire Heater

| Vill - Emission Summary for Worksneet (excludes inert /    |       |
|------------------------------------------------------------|-------|
| Not a Containmant)                                         |       |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |       |
| (lbs/hr)                                                   | 0.02  |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |       |
| (tpy)                                                      | 0.10  |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.02  |
| Total Annual VOC Emissions (tpy)                           | 0.09  |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.00  |
| Total Annual Inorganic Emissions (tpy)                     | 0.01  |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00  |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00  |
| Total GHG TPY (mass basis)                                 | 3.15  |
| Total GHG TPY (CO <sub>2</sub> e)                          | 77.29 |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Stripper

blank)

| I. General Information                                                                                                                                                                                                                                                                                                                                           |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Company name                                                                                                                                                                                                                                                                                                                                                     | Ingleside Clean Ammonia Partners, LLC |
| Permit number                                                                                                                                                                                                                                                                                                                                                    | To be assigned                        |
| Source name                                                                                                                                                                                                                                                                                                                                                      | Stripper                              |
| Emission Point Number (EPN)                                                                                                                                                                                                                                                                                                                                      | FUG                                   |
| Preparation date                                                                                                                                                                                                                                                                                                                                                 | 8/18/2023                             |
| I acknowledge that I am submitting an authorized TCEQ<br>application workbook and any necessary attachments.<br>Except for inputting the requested data and adjusting row<br>height and column width, I have not changed the TCEQ<br>application workbook in any way, including but not<br>limited to changing formulas, formatting, content, or<br>protections. | Yes                                   |
|                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| II. Industry, Pollutant Type and Emission Factors                                                                                                                                                                                                                                                                                                                |                                       |
| Industry Type (select one before continuing, do not leave                                                                                                                                                                                                                                                                                                        | SOCMI w/o Ethylene                    |

| III. Control Efficiencies                                        |        |
|------------------------------------------------------------------|--------|
| Instrument Monitoring LDAR Program (select one, do not           | 28VHP  |
| leave blank, select None if not applicable)                      |        |
| Connector Monitoring LDAR Program (select one, do not            | 28CNTQ |
| leave blank, select None if not applicable)                      |        |
| Physical Inspection LDAR Program (select one, do not leave       | 28AVO  |
| blank, select None if not applicable)                            |        |
| Are your facilities subject to fugitive emission monitoring      | No     |
| under 30 TAC §§115.324(1)(C) and 354(1)(A) or are you            |        |
| applying reduction credit for process drains?                    |        |
| If yes, please select the appropriate control efficiency:        |        |
| If yes, provide justification for the selected reduction credit. |        |
| Note: Facilities subject to fugitive emission monitoring under   |        |
| 30 TAC §§115.324(1)(C) and 354(1)(A) are required to             |        |
| monitor process drains on an annual basis. A 75% reduction       |        |
| credit may be applied for annual monitoring of process drains    |        |
| at a leak threshold of 500 ppmv provided the drain is designed   |        |
| in such a manner that repairs to leaking drains can be           |        |
| achieved. For example, flushing a water seal on a leaking        |        |
| process drain would constitute repair, so a 75% reduction        |        |
| credit may be applied. Similarly, a 95% reduction credit can be  |        |
| applied for quarterly monitoring of drains if repairs to the     |        |
| leaking drains can be completed.                                 |        |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Stripper          |

| IV. Emission Rates                                 |                    |       |                                |                                                        |                                                          |                                                      |                     |                   |
|----------------------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------|-------------------|
| Component                                          | Service            | Count | Industry<br>Emission<br>Factor | Instrument<br>Monitoring<br>LDAR Control<br>Efficiency | Connector<br>Monitoring<br>LDAR<br>Control<br>Efficiency | Physical<br>Inspection<br>LDAR Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
| Valves                                             | Gas/Vapor          | 476   | 0.0089                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.13                | 0.56              |
| Valves                                             | Light Liquid       |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Gas/Vapor          |       | 0.0089                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM [3]                                     | Light Liquid       |       | 0.0035                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Gas/Vapor          |       | 0.0089                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Valves-DTM(AM) [4]                                 | Light Liquid       |       | 0.0035                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Valves                                             | Heavy Liquid       |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves                                             | Ultra Heavy Liquid |       | 0.0007                         | 0                                                      | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Valves (controlled)                                | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Pumps                                              | Light Liquid       |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Heavy Liquid       |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps                                              | Ultra Heavy Liquid |       | 0.0161                         | 0                                                      | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Pumps (controlled)                                 | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Flanges/Connectors                                 | Gas/Vapor          | 2840  | 0.0029                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 0.25                | 1.08              |
| Flanges/Connectors                                 | Light Liquid       |       | 0.0005                         | 0.3                                                    | 0.97                                                     | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Gas/Vapor          |       | 0.0029                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM [3]                         | Light Liquid       |       | 0.0005                         | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Gas/Vapor          |       | 0.0029                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors-DTM(AM) [4]                     | Light Liquid       |       | 0.0005                         | 0.75                                                   | 0.75                                                     | 0.75                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Heavy Liquid       |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors                                 | Ultra Heavy Liquid |       | 0.00007                        | 0.3                                                    | 0.3                                                      | 0.97                                                 | 0.00                | 0.00              |
| Flanges/Connectors (controlled)                    | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Compressors                                        | Gas/Vapor          |       | 0.5027                         | 0.85                                                   | 0                                                        | 0.95                                                 | 0.00                | 0.00              |
| Compressors (controlled)                           | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Relief Valves                                      | Gas/Vapor          |       | 0.2293                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves                                      | Liquid             |       | 0.0035                         | 0.97                                                   | 0                                                        | 0.97                                                 | 0.00                | 0.00              |
| Relief Valves (controlled)                         | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Open-Ended Lines                                   | All                |       | 0.004                          | 0.97                                                   | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Open-Ended Lines (controlled)                      | All                |       | 0                              | 1                                                      | 1                                                        | 1                                                    | 0.00                | 0.00              |
| Sampling Connections (hourly) [1]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | 0.00                | N/A               |
| Sampling Connections (annual) [2]                  | All                |       | 0.033                          | 0                                                      | 0                                                        | 0                                                    | N/A                 | 0.00              |
| Process Drains [5]                                 | All                |       | 0.07                           | 0                                                      | 0                                                        | 0                                                    | 0.00                | 0.00              |
| Agitators                                          | All                |       | 0.0386                         | 0.85                                                   | 0                                                        | 0.93                                                 | 0.00                | 0.00              |
| Total Count, Total Emission Rates (lbs/hr and tpy) |                    | 3316  |                                |                                                        |                                                          |                                                      | 0.37                | 1.64              |

| Source/Area Name: Stripper                                         |         |       |                                |                                   |                     |                   |
|--------------------------------------------------------------------|---------|-------|--------------------------------|-----------------------------------|---------------------|-------------------|
| V. Emission Rates - Unique Components                              |         |       |                                |                                   |                     |                   |
| Are you proposing any components not included in Section IV above? | No      | •     |                                |                                   |                     |                   |
| If yes, provide justification for the factors used for these       |         |       |                                |                                   |                     |                   |
| unique components.                                                 |         |       |                                |                                   |                     |                   |
| Component                                                          | Service | Count | Proposed<br>Emission<br>Factor | Proposed<br>Control<br>Efficiency | Controlled<br>lb/hr | Controlled<br>tpy |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
|                                                                    |         |       |                                |                                   | 0.00                | 0.00              |
| Total Component Count, Total Emission Rate (Ibs/hr and tpy)        |         | 0     |                                |                                   | 0.00                | 0.00              |

| Table E-13                          |
|-------------------------------------|
| Equipment Leak Fugitives (EPN: FUG) |
| Source/Area Name: Stripper          |

| VI. Speciation (non-GHG)                          |                       |                |      |            |                        |                               |                   |            |            |
|---------------------------------------------------|-----------------------|----------------|------|------------|------------------------|-------------------------------|-------------------|------------|------------|
| CAS #                                             | Chemical Constituent  | Other Species? | VOC? | Inorganic? | VOC-Exempt<br>Solvent? | Inert / Not a<br>Contaminant? | Weight<br>Percent | lb/hr      | tpy        |
| 7783-06-4                                         | hydrogen sulfide      |                | No   | Yes        | No                     | No                            | 42.04%            | 0.15730955 | 0.68901583 |
| 7664-41-7                                         | ammonia               |                | No   | Yes        | No                     | No                            | 9.91%             | 0.03708011 | 0.16241087 |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
|                                                   | No CAS Number Entered |                | No   | No         | No                     | No                            |                   | 0          | 0          |
| Total Weight Percent, Hourly Emissions and Annual |                       |                |      |            |                        |                               | 51 95%            | 0 19       | 0.85       |
| Emissions (excluding Inert / Not a Contaminant)   |                       |                |      |            |                        |                               | 01.0075           | 0.10       | 0.00       |

| Fugitive | Calculation | Workbook. | Summary |
|----------|-------------|-----------|---------|
| i ugiuve | Galculation | workbook. | Gammary |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Stripper

| VII. Speciation (GHG)                                                    |                           |                                   |                   |                             |                                              |
|--------------------------------------------------------------------------|---------------------------|-----------------------------------|-------------------|-----------------------------|----------------------------------------------|
| CAS #                                                                    | Chemical Constituent Name | Global Warming<br>Potential (GWP) | Weight<br>Percent | Emissions<br>(U.S. tons per | CO <sub>2</sub> e<br>Emissions<br>(U.S. tons |
| 124-38-9                                                                 | Carbon dioxide            | 1                                 | 48.05%            | 0.787446659                 | 0.787446659                                  |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | Entered                           |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
|                                                                          | No CAS Number Entered     | No CAS Number<br>Entered          |                   | 0                           | -                                            |
| Total GHG Emissions (Mass Basis and Carbon dioxide-<br>equivalent Basis) |                           |                                   |                   | 0.787446659                 | 0.787446659                                  |

#### Table E-13 Equipment Leak Fugitives (EPN: FUG) Source/Area Name: Stripper

| VIII - Emission Summary for Worksheet (excludes Inert /    |      |  |  |  |
|------------------------------------------------------------|------|--|--|--|
| Not a Contaminant)                                         |      |  |  |  |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |  |  |  |
| (lbs/hr)                                                   | 0.19 |  |  |  |
| Total Emissions (excludes GHG / Inert / Not a Contaminant) |      |  |  |  |
| (tpy)                                                      | 0.85 |  |  |  |
| Total Hourly VOC Emissions (lbs/hr)                        | 0.00 |  |  |  |
| Total Annual VOC Emissions (tpy)                           | 0.00 |  |  |  |
| Total Hourly Inorganic Emissions (lbs/hr)                  | 0.19 |  |  |  |
| Total Annual Inorganic Emissions (tpy)                     | 0.85 |  |  |  |
| Total Hourly Exempt Solvent Emissions (lbs/hr)             | 0.00 |  |  |  |
| Total Annual Exempt Solvent Emissions (tpy)                | 0.00 |  |  |  |
| Total GHG TPY (mass basis)                                 | 0.79 |  |  |  |
| Total GHG TPY (CO <sub>2</sub> e)                          | 0.79 |  |  |  |

APPENDIX F PROFESSIONAL ENGINEER CERTIFICATION

# **Professional Engineer Certification**

Based on the information provided by Ingleside Clean Ammonia Partners, LLC (ICAP), I directly supervised the work products contained in the application and emission calculations of this document.

To the best of my knowledge, the representations made in this document are true and accurate. By affixing my seal below, I submit that the engineering work and calculations performed in the above listed sections were either performed by myself or under my direct supervision, as defined in Section 131.81 of the Texas Engineering Practice Act.

Place P.E. Seal below this line



October 12, 2023 Date

Jessica L. Ross, Texas License No. 121869 Edge Engineering and Science, LLC, Firm No. 12795